

Welcome to SIPp reference documentation!

Contents:

	Foreword

	Installation
	Getting SIPp

	SIPp releases

	Unstable release

	Available platforms

	Installing SIPp

	Main features
	Running SIPp in background

	Screens

	Exit codes

	Contributing to SIPp

	Integrated scenarios
	UAC

	UAC with media

	UAS

	regexp

	branch

	UAC Out-of-call Messages

	3PCC

	Create your own XML scenarios
	Create your own XML scenarios
	List of attributes common to all commands

	List of commands with their attributes

	Structure of client (UAC like) XML scenarios

	Structure of server (UAS like) XML scenarios

	Keyword list
	[service]

	[remote_ip]

	[remote_port]

	[transport]

	[local_ip]

	[local_ip_type]

	[local_port]

	[len]

	[call_number]

	[cseq]

	[call_id]

	[media_ip]

	[media_ip_type]

	[media_port]

	[auto_media_port]

	[last_*]

	[field0-n file=<filename> line=<number>]

	[file name=<filename>]

	[timestamp]

	[last_message]

	[$n]

	[authentication]

	[pid]

	[routes]

	[next_url]

	[branch]

	[msg_index]

	[cseq]

	[clock_tick]

	[sipp_version]

	[tdmmap]

	[fill]

	[users]

	[userid]

	Actions
	Regular expressions

	Log a message

	Execute a command

	Internal commands

	External commands

	Media/RTP commands

	Variable Manipulation

	String Variables

	Variable Testing

	lookup

	Updating In-Memory Injection files

	Jumping to an Index

	gettimeofday

	setdest

	verifyauth

	Variables

	Injecting values from an external CSV during calls
	PRINTF Injection files

	Printf Injection File Parameters
	Indexing Injection files

	Conditional branching
	Conditional branching in scenarios

	Randomness in conditional branching

	SIP authentication

	Initialization Stanza

	3PCC Extended

	Controlling SIPp
	List of Interactive Commands

	Traffic control

	Remote control

	Transport modes
	UDP mono socket

	UDP multi socket

	UDP with one socket per IP address

	TCP mono socket

	TCP multi socket

	TCP reconnections

	TLS mono socket

	TLS multi socket

	SCTP mono socket

	SCTP multi socket

	IPv6 support

	Multi-socket limit

	Handling media with SIPp
	RTP echo

	RTP streaming

	PCAP Play

	Statistics
	Response times

	Available counters

	Detailed Message Counts

	Error handling
	Unexpected messages

	Retransmissions (UDP only)

	Log files

	Performance testing with SIPp
	Advice to run performance tests with SIPp

	SIPp’s internal scheduling

	Useful tools aside SIPp
	JEdit

	Wireshark/tshark

	SIP callflow

Indices and tables

	Index

	Module Index

	Search Page

Foreword

Warning
This version of the documentation is for SIPp 3.6 and describes some
features not present in earlier versions. See the sidebar to access
documentation for previous versions.
SIPp is a performance testing tool for the SIP protocol. It includes a
few basic SipStone user agent scenarios (UAC and UAS) and establishes
and releases multiple calls with the INVITE and BYE methods. It can
also reads XML scenario files describing any performance testing
configuration. It features the dynamic display of statistics about
running tests (call rate, round trip delay, and message statistics),
periodic CSV statistics dumps, TCP and UDP over multiple sockets or
multiplexed with retransmission management, regular expressions and
variables in scenario files, and dynamically adjustable call rates.

SIPp can be used to test many real SIP equipements like SIP proxies,
B2BUAs, SIP media servers, SIP/x gateways, and SIP PBXes. It is also
very useful to emulate thousands of user agents calling your SIP
system.

Want to see it?

Here is a screenshot

[image: _images/sipp-01.jpg]

Installation

Getting SIPp

SIPp is released under the GNU GPL license [https://www.gnu.org/copyleft/gpl.html]. All the terms of the
license apply. It was originally created and provided to the SIP
community by Hewlett-Packard [https://www.hp.com/] engineers in hope it can be useful,
but HP does not provide any support nor warranty concerning SIPp.

SIPp releases

Like many other “open source” projects, there are two versions of
SIPp: a stable and unstable release. Stable release: before being
labelled as “stable”, a SIPp release is thoroughly tested. So you can
be confident that all mentioned features will work :)

Note

Use the stable release for your everyday use and if you are not
blocked by a specific feature present in the “unstable release” (see
below).

SIPp stable download page [https://github.com/SIPp/sipp/releases]

Unstable release

Unstable release: all new features and bug fixes are checked in
SIPp’s master tree [https://github.com/SIPp/sipp/tree/master] repository as soon as they are available.

Note

Use the unstable release if you absolutely need a bug fix or a feature
that is not in the stable release.

Available platforms

SIPp is available on Linux and Cygwin. Other Unix distributions are
likely to work, but are not tested every release cycle.

Note

SIPp on Cygwin works only on Windows XP and later versions and will
not work on Win2000. This is because of IPv6 support.

Installing SIPp

	On Linux, SIPp is provided in the form of source code. You will need
to compile SIPp to actually use it.

	Pre-requisites to compile SIPp are:

	C++ Compiler

	curses or ncurses library

	For TLS support: OpenSSL >= 0.9.8

	For pcap play support: libpcap and libnet

	For SCTP support: lksctp-tools

	For distributed pauses: Gnu Scientific Libraries [https://www.gnu.org/software/gsl/]

	You have four options to compile SIPp:

	Without TLS (Transport Layer Security), SCTP or PCAP support –
this is the recommended setup if you don’t need to handle SCTP, TLS or
PCAP:

tar -xvzf sipp-xxx.tar
cd sipp
./configure
make

	With TLS support, you must have installed OpenSSL library [https://www.openssl.org/]
(>=0.9.8) (which may come with your system). Building SIPp
consists only of adding the --with-openssl option to the
configure command:

tar -xvzf sipp-xxx.tar.gz
cd sipp
./configure --with-openssl
make

	With PCAP play support:

tar -xvzf sipp-xxx.tar.gz
cd sipp
./configure --with-pcap
make

	With SCTP support:

tar -xvzf sipp-xxx.tar.gz
cd sipp
./configure --with-sctp
make

	You can also combine these various options, e.g.:

tar -xvzf sipp-xxx.tar.gz
cd sipp
./configure --with-sctp --with-pcap --with-openssl
make

Warning

SIPp compiles under CYGWIN on Windows, provided that you
installed IPv6 extension for CYGWIN [http://win6.jp/Cygwin/], as
well as libncurses and (optionally OpenSSL and WinPcap). SCTP is not
currently supported.

	To compile SIPp on Windows with pcap (media support), you must:

	Copy the WinPcap developer package [https://www.winpcap.org/devel.htm] to “C:cygwinlibWpdPack”

	Remove or rename “pthread.h” in “C:cygwinlibWpdPackInclude”, as
it interfers with pthread.h from cygwin

	Compile according to the instructions above.

Main features

SIPp allows to generate one or many SIP calls to one remote system.
The tool is started from the command line. In this example, two SIPp
are started in front of each other to demonstrate SIPp capabilities.

Run sipp with embedded server (uas) scenario:

./sipp -sn uas

On the same host, run sipp with embedded client (uac) scenario:

./sipp -sn uac 127.0.0.1

Running SIPp in background

SIPp can be launched in background mode (-bg command line option).

By doing so, SIPp will be detached from the current terminal and run
in the background. The PID of the SIPp process is provided. If you
didn’t specify a number of calls to execute with the -m option, SIPp
will run forever.

There is a mechanism implemented to stop SIPp smoothly. The command
kill -SIGUSR1 [SIPp_PID] will instruct SIPp to stop placing any new
calls and finish all ongoing calls before exiting.

When using the background mode, the main sipp instance stops and a
child process will continue the job. Therefore, the log files names
will contain another PID than the actual sipp instance PID.

Screens

Several screens are available to monitor SIP traffic. You can change
the screen view by pressing 1 to 9 keys on the keyboard.

	Key ‘1’: Scenario screen. It displays a call flow of the scenario as
well as some important informations.

[image: _images/sipp-03.jpg]

	Key ‘2’: Statistics screen. It displays the main statistics
counters. The “Cumulative” column gather all statistics, since SIPp
has been launched. The “Periodic” column gives the statistic value for
the period considered (specified by -f frequency command line
parameter).

[image: _images/sipp-04.jpg]

	Key ‘3’: Repartition screen. It displays the distribution of
response time and call length, as specified in the scenario.

[image: _images/sipp-05.jpg]

	Key ‘4’: Variables screen. It displays informations on actions in
scenario as well as scenario variable informations.

[image: _images/sipp-06.jpg]

Exit codes

To ease automation of testing, upon exit (on fatal error or when the
number of asked calls (-m command line option) is reached, sipp exits
with one of the following exit codes:

	Code

	Description

	0

	All calls were successful

	1

	At least one call failed

	97

	Exit on internal command. Calls may have been processed. Also
exit on global timeout (see -timeout_global option)

	99

	Normal exit without calls processed

	-1

	Fatal error

	-2

	Fatal error binding a socket

Depending on the system that SIPp is running on, you can echo this
exit code by using “echo ?” command.

Contributing to SIPp

Of course, we welcome contributions, and many of SIPp’s features
(including epoll support for better Linux performance, RTP streaming,
and Cygwin support) have come from external contributions.

See developers guide [https://github.com/SIPp/sipp/wiki/New-Developers'-Guide] for how to get started

	Richard GAYRAUD [initial code]

	Olivier JACQUES [code/documentation]

	Robert Day [code/documentation]

	Charles P. Wright [code]

	Many contributors [code]

Integrated scenarios

Integrated scenarios? Yes, there are scenarios that are embedded in
SIPp executable. While you can create your own custom SIP scenarios
(see how to create your own XML scenarios), a few basic (yet useful)
scenarios are available in SIPp executable.

UAC

Scenario file: uac.xml

SIPp UAC Remote
 |(1) INVITE |
 |------------------>|
 |(2) 100 (optional) |
 |<------------------|
 |(3) 180 (optional) |
 |<------------------|
 |(4) 200 |
 |<------------------|
 |(5) ACK |
 |------------------>|
 | |
 |(6) PAUSE |
 | |
 |(7) BYE |
 |------------------>|
 |(8) 200 |
 |<------------------|

UAC with media

Scenario file: uac_pcap.xml

SIPp UAC Remote
 |(1) INVITE |
 |------------------>|
 |(2) 100 (optional) |
 |<------------------|
 |(3) 180 (optional) |
 |<------------------|
 |(4) 200 |
 |<------------------|
 |(5) ACK |
 |------------------>|
 | |
 |(6) RTP send (8s) |
 |==================>|
 | |
 |(7) RFC2833 DIGIT 1|
 |==================>|
 | |
 |(8) BYE |
 |------------------>|
 |(9) 200 |
 |<------------------|

UAS

Scenario file: uas.xml

Remote SIPp UAS
 |(1) INVITE |
 |------------------>|
 |(2) 180 |
 |<------------------|
 |(3) 200 |
 |<------------------|
 |(4) ACK |
 |------------------>|
 | |
 |(5) PAUSE |
 | |
 |(6) BYE |
 |------------------>|
 |(7) 200 |
 |<------------------|

regexp

Scenario file: regexp.xml

This scenario, which behaves as an UAC is explained in greater details
in this section.

SIPp regexp Remote
 |(1) INVITE |
 |------------------>|
 |(2) 100 (optional) |
 |<------------------|
 |(3) 180 (optional) |
 |<------------------|
 |(4) 200 |
 |<------------------|
 |(5) ACK |
 |------------------>|
 | |
 |(6) PAUSE |
 | |
 |(7) BYE |
 |------------------>|
 |(8) 200 |
 |<------------------|

branch

Scenario files: branchc.xml and
branchs.xml

Those scenarios, which work against each other (branchc for client
side and branchs for server side) are explained in greater details in
this section.

REGISTER ---------->
 200 <----------
 200 <----------
 INVITE ---------->
 100 <----------
 180 <----------
 403 <----------
 200 <----------
 ACK ---------->
 [5000 ms]
 BYE ---------->
 200 <----------

UAC Out-of-call Messages

Scenario file: ooc_default.xml

When a SIPp UAC receives an out-of-call request, it instantiates an
out-of-call scenario. By default this scenario simply replies with a
200 OK response. This scenario can be overridden by passing the -oocsf
or -oocsn command line options.

SIPp UAC Remote
 |(1) .* |
 |<------------------|
 |(2) 200 |
 |------------------>|

3PCC

3PCC stands for 3rd Party Call Control. 3PCC is described in
RFC 3725 [https://tools.ietf.org/html/rfc3725.html]. While this feature was first developed to allow 3PCC like
scenarios, it can also be used for every case where you would need one
SIPp to talk to several remotes.

In order to keep SIPp simple (remember, it’s a test tool!), one SIPp
instance can only talk to one remote. Which is an issue in 3PCC call
flows, like call flow I (SIPp being a controller):

A Controller B
(1) INVITE no SDP	
<------------------	
(2) 200 offer1	
------------------>	
	(3) INVITE offer1
	------------------>
	(4) 200 OK answer1
	<------------------
	(5) ACK
	------------------>
(6) ACK answer1	
<------------------	
(7) RTP	
.......................................	

Scenario file: 3pcc-A.xml

Scenario file: 3pcc-B.xml

Scenario file: 3pcc-C-A.xml

Scenario file: 3pcc-C-B.xml

The 3PCC feature in SIPp allows to have two SIPp instances launched
and synchronised together. If we take the example of call flow I, one
SIPp instance will take care of the dialog with remote A (this
instance is called 3PCC-C-A for 3PCC-Controller-A-Side) and another
SIPp instance will take care of the dialog with remote B (this
instance is called 3PCC-C-B for 3PCC-Controller-B-Side).

The 3PCC call flow I will, in reality, look like this (Controller has
been divided in two SIPp instances):

A Controller A Controller B B
(1) INVITE no SDP		
<------------------		
(2) 200 offer1		
------------------>		
sendCmd (offer1)		
	----------------->	
	recvCmd	
		(3) INVITE offer1
		------------------>
		(4) 200 OK answer1
		<------------------
	sendCmd	
	(answer1)	
	<-----------------	
recvCmd	(5) ACK	
		------------------>
(6) ACK answer1		
<------------------		
(7) RTP		
..		

As you can see, we need to pass information between both sides of the
controller. SDP “offer1” is provided by A in message (2) and needs to
be sent to B side in message (3). This mechanism is implemented in the
scenarios through the <sendCmd> command. This:

<sendCmd>
 <![CDATA[
 Call-ID: [call_id]
 [$1]

]]>
</sendCmd>

Will send a “command” to the twin SIPp instance. Note that including
the Call-ID is mandatory in order to correlate the commands to actual
calls. In the same manner, this:

<recvCmd>
 <action>
 <ereg regexp="Content-Type:.*"
 search_in="msg"
 assign_to="2"/>
 </action>
</recvCmd>

Will receive a “command” from the twin SIPp instance. Using the
regular expression mechanism, the content is retrieved and stored in a
call variable ($2 in this case), ready to be reinjected:

<send>
 <![CDATA[

 ACK sip:[service]@[remote_ip]:[remote_port] SIP/2.0
 Via: SIP/2.0/[transport] [local_ip]:[local_port]
 From: sipp <sip:sipp@[local_ip]:[local_port]>;tag=[call_number]
 To: sut <sip:[service]@[remote_ip]:[remote_port]>[peer_tag_param]
 Call-ID: [call_id]
 CSeq: 1 ACK
 Contact: sip:sipp@[local_ip]:[local_port]
 Max-Forwards: 70
 Subject: Performance Test
 [$2]

]]>
</send>

In other words, sendCmd and recvCmd can be seen as synchronization
points between two SIPp instances, with the ability to pass parameters
between each other.

Another scenario that has been reported to be do-able with the 3PCC
feature is the following:

	A calls B. B answers. B and A converse

	B calls C. C answers. C and B converse

	B “REFER”s A to C and asks to replace A-B call with B-C call.

	A accepts. A and C talk. B drops out of the calls.

Create your own XML scenarios

Contents:

	Create your own XML scenarios
	List of attributes common to all commands

	List of commands with their attributes

	Structure of client (UAC like) XML scenarios

	Structure of server (UAS like) XML scenarios

	Keyword list
	[service]

	[remote_ip]

	[remote_port]

	[transport]

	[local_ip]

	[local_ip_type]

	[local_port]

	[len]

	[call_number]

	[cseq]

	[call_id]

	[media_ip]

	[media_ip_type]

	[media_port]

	[auto_media_port]

	[last_*]

	[field0-n file=<filename> line=<number>]

	[file name=<filename>]

	[timestamp]

	[last_message]

	[$n]

	[authentication]

	[pid]

	[routes]

	[next_url]

	[branch]

	[msg_index]

	[cseq]

	[clock_tick]

	[sipp_version]

	[tdmmap]

	[fill]

	[users]

	[userid]

	Actions
	Regular expressions
	regexp action syntax
	Example for assign_to

	Log a message

	Execute a command

	Internal commands

	External commands

	Media/RTP commands

	Variable Manipulation

	String Variables

	Variable Testing

	lookup

	Updating In-Memory Injection files

	Jumping to an Index

	gettimeofday

	setdest

	verifyauth

	Variables

	Injecting values from an external CSV during calls
	PRINTF Injection files

	Printf Injection File Parameters
	Indexing Injection files

	Conditional branching
	Conditional branching in scenarios

	Randomness in conditional branching

	SIP authentication

	Initialization Stanza

Create your own XML scenarios

Of course embedded scenarios will not be enough. So it’s time to
create your own scenarios. A SIPp scenario is written in XML (a DTD
that may help you write SIPp scenarios does exist and has been tested
with jEdit - this is described in a later section). A scenario will
always start with:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<scenario name="Basic Sipstone UAC">

And end with:

</scenario>

Easy, huh? Ok, now let’s see what can be put inside. You are not
obliged to read the whole table now! Just go in the next section for
an example.

There are many common attributes used for flow control and statistics,
that can be used for all of the message commands (i.e., <send> ,
<recv> , <nop> , <pause> , <sendCmd> and <recvCmd>).

List of attributes common to all commands

	Attribute(s)

	Description

	Example

	start_rtd

	Starts one of the ” Response Time Duration” timer. (see statistics section).

	<send start_rtd="invite">

the timer named “invite” will start when the message is sent.

	rtd

	Stops one of the 5 ” Response Time Duration”

	<send rtd="2">

the timer number 2 will stop when the message is sent.

	repeat_rtd

	Used with a rtd attribute, it allows the
corresponding ” Response Time Duration” timer to be counted more
than once per call (useful for loop call flows).

	<send rtd="1"repeat_rtd="true">

the timer number 1 value will be printed but the timer won’t stop.

	crlf

	Displays an empty line after the arrow for the
message in main SIPp screen.

	<send crlf="true">

	next

	You can put a “next”
in any command element to go to another part of the script when
you are done with sending the message. For optional receives, the next
is only taken if that message was received. See conditional branching
section for more info.

	Example to jump to label “12” after sending an ACK:

<send next="12">
 <![CDATA[

 ACK sip:[service]@[remote_ip]:[remote_port] SIP/2.0
 Via: ...
 From: ...
 To: ...
 Call-ID: ...
 Cseq: ...
 Contact: ...
 Max-Forwards: ...
 Subject: ...
 Content-Length: 0

]]>
</send>

Example to jump to label “5” when receiving a 403 message:

<recv response="100"
 optional="true">
</recv>
<recv response="180" optional="true">
</recv>
<recv response="403" optional="true" next="5">
</recv>
<recv response="200">
</recv>

	test

	You can put a “test” next to a “next” attribute to indicate that
you only want to branch to the label specified with “next” if the
variable specified in “test” is set (through regexp for example). See
conditional branching section for more info.

	Example to jump to label
“6” after sending an ACK only if variable 4 is set:

<send next="6" test="4">
 <![CDATA[

 ACK sip:[service]@[remote_ip]:[remote_port] SIP/2.0
 Via: ...
 From: ...
 To: ...
 Call-ID: ...
 Cseq: ...
 Contact: ...
 Max-Forwards: ...
 Subject: ...
 Content-Length: 0

]]>
</send>

	chance

	In combination with “test”, probability to actually branch to
another part of the scenario. Chance can have a value between 0
(never) and 1 (always). See conditional branching section for more
info.

	<recv response="403" optional="true" next="5" test="3" chance="0.90">
</recv>

90% chance to go to label “5” if variable “3” is set.

	condexec

	Executes an element only if the variable in the condexec attribute is
set. This attribute allows you to write complex XML scenarios with
fewer next attributes and labels.

	<nop condexec="executethis">

	condexec_inverse

	If condexec is set, condexec_inverse inverts the
condition in condexec. This allows you to execute an element only when
a variable is not set.

	<nop condexec="skipthis"condexec_inverse="true">

	counter

	Increments the counter given as
parameter when the message is sent. The counters are saved in the
statistic file.

	<send counter="MsgA">

Increments counter “MsgA” when the message is sent.
Each command also has its own unique attributes, listed here:

List of commands with their attributes

	Command

	Attribute(s)

	Description

	Example

	<send>

	retrans

	Used for UDP transport only: it specifies the T1 timer value, as described in SIP
RFC 3261 [https://tools.ietf.org/html/rfc3261.html], section 17.1.1.2.

	<send retrans="500">

will initiate T1 timer to 500 milliseconds (RFC 3261 [https://tools.ietf.org/html/rfc3261.html] default).

	
	lost

	Emulate packet lost. The value is specified as a percentage.

	<send lost="10">

10% of the message sent are actually not sent :).

	
	start_txn

	Records the branch ID of this sent message so that responses
can be properly matched (without this element the transaction
matching is done based on the CSeq method, which is imprecise).

	<send start_txn="invite">

Stores the branch ID of this message in the transaction named “invite”.

	
	ack_txn

	Indicates that the ACK being sent corresponds to the
transaction started by a start_txn attribute. Every INVITE with a
start_txn tag must have a matching ACK with an ack_txn attribute.

	<send ack_txn="invite">

References the branch ID of the transaction named “invite”.

	<recv>

	response

	Indicates what SIP message code is expected.

	<recv response="200">

SIPp will expect a SIP message with code “200”.

	
	request

	Indicates what SIP message request is expected.

	<recv request="ACK">

SIPp will expect an “ACK” SIP message.

	
	optional

	Indicates if the message to receive is optional. In case of an
optional message and if the message is actually received, it is not
seen as a unexpected message. When an unexpected message is received,
Sipp looks if this message matches an optional message defined in the
previous step of the scenario.
If optional is set to “global”, Sipp will look every previous steps of
the scenario.

	<recv response="100" optional="true">

The 100 SIP message can be received without being considered as “unexpected”.

	
	ignoresdp

	Ignore SDP from received message, when set to true. It will allow you
to reject newly negotiated streams while keeping the old media flowing.

	<recv request="INVITE" ignoresdp="true">

	
	rrs

	R ecord R oute S et. if this attribute is set to “true”, then the
“Record-Route:” header of the message received is stored and can be
recalled using the [routes] keyword.

	<recv response="100" rrs="true">

	
	auth

	Authentication. if this attribute is set to “true”, then the
“Proxy-Authenticate:” header of the message received is stored and is
used to build the [authentication] keyword.

	<recv response="407" auth="true">

	
	lost

	Emulate packet lost. The value is specified as a
percentage.

	<recv lost="10">

10% of the message received are thrown away.

	
	timeout

	Specify a timeout while waiting for a message. If the
message is not received, the call is aborted, unless an ontimeout
label is defined.

	<recv timeout="100000">

	
	ontimeout

	Specify a label to jump to if the timeout popped before the message to be received.

	Example to jump to label “5” when not receiving a 100 message after
100 seconds:

<recv response="100" timeout="100000" ontimeout="5">
</recv>

	
	action

	Specify an action when receiving the message. See Actions
section for possible actions.

	Example of a “regular expression” action:

<recv response="200">
<action>
 <ereg regexp="([0-9]{1,3}\.){3}[0-9]{1,3}:[0-9]*"
 search_in="msg"
 check_it="true"
 assign_to="1,2"/>
 </action>
</recv>

	
	regexp_match

	Boolean. Indicates if ‘request’ (‘response’ is not
available) is given as a regular expression. If so, the recv command
will match against the regular expression. This allows to catch
several cases in the same receive command.

	Example of a recv command that matches MESSAGE or PUBLISH or SUBSCRIBE requests:

<recv request="MESSAGE|PUBLISH|SUBSCRIBE" crlf="true" regexp_match="true">
</recv>

	
	response_txn

	Indicates that this is a response to a transaction that
was previously started. To match, the branch ID of the first via
header must match the stored transaction ID.

	<recv response="200" response_txn="invite" />

Matches only responses to the message sent with start_txn=”invite”
attribute.

	<pause>

	milliseconds

	Specify the pause delay, in milliseconds. When this delay is not set, the value of
the -d command line parameter is used.

	<pause milliseconds="5000"/>

pause the scenario for 5 seconds.

	
	variable

	Indicates which call variable to use to determine the length of the pause.

	<pause variable="1" />

pauses for the number of milliseconds specified by
call variable 1.

	
	distribution

	Indicates which statistical distribution
to use to determine the length of the pause. Without GSL, you may use
uniform or fixed. With GSL, normal, exponential, gamma, lambda,
lognormal, negbin, (negative binomial), pareto, and weibull are
available. Depending on the distribution you select, you must also
supply distribution specific parameters.

	The following examples show the various types of distributed pauses:

	<pause distribution=”fixed” value=”1000” /> pauses for 1 second.

	<pause distribution=”uniform” min=”2000” max=”5000”/> pauses between
2 and 5 seconds.

The remaining distributions require GSL. In general The parameter
names were chosen to be as consistent with Wikipedia’s distribution
description pages.

	<pause distribution=”normal” mean=”60000” stdev=”15000”/> provides a
normal pause with a mean of 60 seconds (i.e. 60,000 ms) and a standard
deviation of 15 seconds. The mean and standard deviation are specified
as integer milliseconds. The distribution will look like:

[image: ../_images/dist_normal.gif]

	<pause distribution=”lognormal” mean=”12.28” stdev=”1” /> creates a
distribution’s whose natural logarithm has a mean of 12.28 and a
standard deviation of 1. The mean and standard deviation are specified
as double values (in milliseconds). The distribution will look like:

[image: ../_images/dist_lognormal.gif]

	<pause distribution=”exponential” mean=”900000”/> creates an
exponentially distributed pause with a mean of 15 minutes. The
distribution will look like:

[image: ../_images/dist_exponential.gif]

	<pause distribution=”weibull” lambda=”3” k =”4”/> creates a Weibull
distribution with a scale of 3 and a shape of 4 (see Weibull on
Wikipedia [https://en.wikipedia.org/wiki/Weibull_distribution] for a description of the distribution).

	<pause distribution=”pareto” k=”1” x_m=”2”/> creates a Pareto
distribution with k and x m of 1 and 2, respectively (see Pareto on
Wikipedia [https://en.wikipedia.org/wiki/Pareto_distribution] for a description of the distribution).

	<pause distribution=”gamma” k=”3” theta=”2”/> creates a Gamma
distribution with k and theta of 9 and 2, respectively (see Gamma on
Wikipedia [https://en.wikipedia.org/wiki/Gamma_distribution] for a description of the distribution).

	<pause distribution=”negbin” p=”0.1” n=”2”/> creates a Negative
binomial distribution with p and n of 0.1 and 2, respectively (see
Negative Binomial on Wikipedia [https://en.wikipedia.org/wiki/Negative_binomial_distribution] for a description of the
distribution).

	
	sanity_check

	By default, statistically distributed pauses are sanity
checked to ensure that their 99th percentile values are less than
INT_MAX. Setting sanity_check to false disables this behavior.

	<pause distribution="lognormal" mean="10" stdev="10" sanity_check="false"/>

disables sanity checking of the lognormal distribution.

	<nop>

	action

	The nop command doesn’t do anything at SIP level. It is only there to
specify an action to execute. See Actions section for possible
actions.

	Execute the play_pcap_audio/video action:

<nop>
 <action>
 <exec play_pcap_audio="pcap/g711a.pcap"/>
 </action>
</nop>

	<sendCmd>

	<![CDATA[]]>

	Content to be sent to the twin 3PCC SIPp
instance. The Call-ID must be included in the CDATA. In 3pcc extended
mode, the From must be included to.

	<sendCmd>
 <![CDATA[
 Call-ID: [call_id]
 [$1]

]]>
</sendCmd>

	
	dest

	3pcc extended mode only: the twin sipp instance which the command
will be sent to

	<sendCmd dest="s1">

the command will be sent to the “s1” twin instance

	<recvCmd>

	action

	Specify an action when receiving the command. See Actions section
for possible actions.

	Example of a “regular expression” to retrieve what has been send
by a sendCmd command:

<recvCmd>
 <action>
 <ereg regexp="Content-Type:.*"
 search_in="msg"
 assign_to="2"/>
 </action>
</recvCmd>

	
	src

	3pcc extended mode only: indicate the twin sipp instance which the
command is expected to be received from

	<recvCmd src = "s1">

the command will be expected to be received from the “s1” twin instance

	<label>

	id

	A label is used when you want to branch to specific parts
in your scenarios. The “id” attribute is an integer where the maximum
value is 19. See conditional branching section for more info.

	Example: set label number 13:

<label id="13"/>

	<Response Time Repartition>

	value

	Specify the intervals, in milliseconds, used to distribute
the values of response times.

	<ResponseTimeRepartition value="10, 20, 30"/>

response time values are distributed between 0 and 10ms,
10 and 20ms, 20 and 30ms, 30 and beyond.

	<Call Length Repartition>

	value

	Specify the intervals, in milliseconds, used to distribute
the values of the call length measures.

	<CallLengthRepartition value="10, 20, 30"/>

call length values are distributed between 0 and 10ms, 10 and
20ms, 20 and 30ms, 30 and beyond.

	<Globals>

	variables

	Specify the name of globally scoped variables.

	<Globals variables="foo,bar"/>

	<User>

	variables

	Specify the name of user-scoped variables.

	<User variables="foo,bar"/>

	<Reference>

	variables

	Suppresses warnings about unused variables.

	<Reference variables="dummy"/>

There are not so many commands: send, recv, sendCmd, recvCmd, pause,
ResponseTimeRepartition, CallLengthRepartition, Globals, User, and
Reference. To make things even clearer, nothing is better than an
example…

Structure of client (UAC like) XML scenarios

A client scenario is a scenario that starts with a “send” command. So
let’s start:

<scenario name="Basic Sipstone UAC">
 <send>
 <![CDATA[

 INVITE sip:[service]@[remote_ip]:[remote_port] SIP/2.0
 Via: SIP/2.0/[transport] [local_ip]:[local_port]
 From: sipp <sip:sipp@[local_ip]:[local_port]>;tag=[call_number]
 To: sut <sip:[service]@[remote_ip]:[remote_port]>
 Call-ID: [call_id]
 Cseq: 1 INVITE
 Contact: sip:sipp@[local_ip]:[local_port]
 Max-Forwards: 70
 Subject: Performance Test
 Content-Type: application/sdp
 Content-Length: [len]

 v=0
 o=user1 53655765 2353687637 IN IP[local_ip_type] [local_ip]
 s=-
 t=0 0
 c=IN IP[media_ip_type] [media_ip]
 m=audio [media_port] RTP/AVP 0
 a=rtpmap:0 PCMU/8000

]]>
 </send>

Inside the “send” command, you have to enclose your SIP message
between the “<![CDATA” and the “]]>” tags. Everything between those
tags is going to be sent toward the remote system. You may have
noticed that there are strange keywords in the SIP message, like
[service], [remote_ip], … . Those keywords are used to indicate to
SIPp that it has to do something with it.

Now that the INVITE message is sent, SIPp can wait for an answer by
using the “recv” command.

<recv response="100"> optional="true"
</recv>

<recv response="180"> optional="true"
</recv>

<recv response="200">
</recv>

100 and 180 messages are optional, and 200 is mandatory. In a “recv”
sequence, there must be one mandatory message .

Now, let’s send the ACK:

<send>
 <![CDATA[

 ACK sip:[service]@[remote_ip]:[remote_port] SIP/2.0
 Via: SIP/2.0/[transport] [local_ip]:[local_port]
 From: sipp <sip:sipp@[local_ip]:[local_port]>;tag=[call_number]
 To: sut <sip:[service]@[remote_ip]:[remote_port]>[peer_tag_param]
 Call-ID: [call_id]
 Cseq: 1 ACK
 Contact: sip:sipp@[local_ip]:[local_port]
 Max-Forwards: 70
 Subject: Performance Test
 Content-Length: 0

]]>
</send>

We can also insert a pause. The scenario will wait for 5 seconds at
this point.

<pause milliseconds="5000"/>

And finish the call by sending a BYE and expecting the 200 OK:

<send retrans="500">
 <![CDATA[

 BYE sip:[service]@[remote_ip]:[remote_port] SIP/2.0
 Via: SIP/2.0/[transport] [local_ip]:[local_port]
 From: sipp <sip:sipp@[local_ip]:[local_port]>;tag=[call_number]
 To: sut <sip:[service]@[remote_ip]:[remote_port]>[peer_tag_param]
 Call-ID: [call_id]
 Cseq: 2 BYE
 Contact: sip:sipp@[local_ip]:[local_port]
 Max-Forwards: 70
 Subject: Performance Test
 Content-Length: 0

]]>
</send>

<recv response="200" />

And this is the end of the scenario:

</scenario>

Creating your own SIPp scenarios is not a big deal. If you want to see
other examples, use the -sd parameter on the command line to display
embedded scenarios.

Structure of server (UAS like) XML scenarios

A server scenario is a scenario that starts with a “recv” command. The
syntax and the list of available commands is the same as for “client”
scenarios.

But you are more likely to use [last_*] keywords in those server side
scenarios. For example, a UAS example will look like:

<recv request="INVITE">
</recv>

<send>
 <![CDATA[

 SIP/2.0 180 Ringing
 [last_Via:]
 [last_From:]
 [last_To:];tag=[call_number]
 [last_Call-ID:]
 [last_CSeq:]
 Contact: <sip:[local_ip]:[local_port];transport=[transport]>
 Content-Length: 0

]]>
</send>

The answering message, 180 Ringing in this case, is built with the
content of headers received in the INVITE message.

Keyword list

If you want a literal left bracket instead of a keyword, use \x5b where you want a [.

[service]

	Default

	(service)

	Description

	Service field, as passed in the -s service_name

[remote_ip]

	Description

	Remote IP address, as passed on the command line.

[remote_port]

	Default

	5060

	Description

	Remote IP port, as passed on the command line.
You can add a computed offset [remote_port+3] to this value.

[transport]

	Default

	UDP

	Description

	Depending on the value of -t parameter, this will take the values “UDP” or “TCP”.

[local_ip]

	Description

	(Primary host IP address) Will take the value of -i parameter.

[local_ip_type]

	Description

	Depending on the address type of -i parameter (IPv4 or IPv6),
local_ip_type will have value “4” for IPv4 and “6” for IPv6.

[local_port]

	Default

	Chosen by the system

	Description

	Will take the value of -p parameter.
You can add a computed offset [local_port+3] to this value.

[len]

	Description

	Computed length of the SIP body. To be used in “Content-Length” header.
You can add a computed offset [len+3] to this value.

[call_number]

	Description

	Index. The call_number starts from “1” and is incremented by 1 for each call.

[cseq]

	Description

	Generates automatically the CSeq number. The initial value is 1 by default.
It can be changed by using the -base_cseq command line option.

[call_id]

	Description

	A call_id identifies a call and is generated by SIPp for each new call. In client mode, it is mandatory
to use the value generated by SIPp in the “Call-ID” header. Otherwise, SIPp will not recognise the answer to the
message sent as being part of an existing call. Note: [call_id] can be pre-pended with an arbitrary string using
‘///’. Example: Call-ID: ABCDEFGHIJ///[call_id] - it will still be recognized by SIPp as part of the same call.

[media_ip]

	Description

	Depending on the value of -mi parameter, it is the local IP address for RTP echo.

[media_ip_type]

	Description

	Depending on the address type of -mi parameter (IPv4 or IPv6), media_ip_type
will have value “4” for IPv4 and “6” for IPv6. Useful to build the SDP independently of the media IP type.

[media_port]

	Description

	Depending on the value of -mp parameter, it set the local RTP echo port number.
Default is none. RTP/UDP packets received on that port are echoed to their sender.
You can add a computed offset [media_port+3] to this value.

[auto_media_port]

	Description

	Only for pcap. To make audio and video ports begin
from the value of -mp parameter, and change for each call using a periodical
system, modulo 10000 (which limits to 10000 concurrent RTP sessions for pcap_play)

[last_*]

	Description

	The ‘[last_*]’ keyword is replaced automatically by the specified header if it was present
in the last message received (except if it was a retransmission). If the header was not present or if
no message has been received, the ‘[last_*]’ keyword is discarded, and all bytes
until the end of the line are also discarded. If the specified header
was present several times in the message, all occurences are
concatenated (CRLF separated) to be used in place of the ‘[last_*]’ keyword.

[field0-n file=<filename> line=<number>]

	Description

	Used to inject
values from an external CSV file. See “Injecting values from an
external CSV during calls” section. The optional file and line
parameters allow you to select which of the injection files specified
on the command line to use and which line number from that file.

[file name=<filename>]

	Description

	Inserts the entire contents of filename into the
message. Whitespace, including carriage returns and newlines at the
end of the line in the file are not processed as with other keywords;
thus your file must be formatted exactly as you would like the bytes
to appear in the message.

[timestamp]

	Description

	The current time using the same format as error log messages.

[last_message]

	Description

	The last received message.

[$n]

	Description

	Used to inject the value of call variable number n. See Actions_ section

[authentication]

	Description

	Used to put the
authentication header. This field can have parameters, in the
following form: [authentication username=myusername
password=mypassword]. If no username is provided, the value from the
-au (authentication username) or -s (service) command line parameter
is used. If no password is provided, the value from -ap command line
parameter is used. See “Authentication” section

[pid]

	Description

	Provide the process ID (pid) of the main SIPp thread.

[routes]

	Description

	If the “rrs” attribute in a recv command is set to “true”, then the “Record-Route:”
header of the message received is stored and can be recalled using the [routes] keyword.

[next_url]

	Description

	If the “rrs” attribute in a recv command
is set to “true”, then the [next_url] contains the contents of the
Contact header (i.e within the ‘<’ and ‘>’ of Contact)

[branch]

	Description

	Provide a branch value which is a concatenation of magic cookie
(z9hG4bK) + call number + message index in scenario.
An offset (like [branch-N]) can be appended if you need to have the
same branch value as a previous message.

[msg_index]

	Description

	Provide the message number in the scenario.

[cseq]

	Description

	Provides the CSeq value of
the last request received. This value can be incremented (e.g.
[cseq+1] adds 1 to the CSeq value of the last request).

[clock_tick]

	Description

	Includes the internal SIPp clock tick value in the message.

[sipp_version]

	Description

	Includes the SIPp version string in the message.

[tdmmap]

	Description

	Includes the tdm map values used by the call in the message
(see -tdmmap option).

[fill]

	Description

	Injects filler characters into the
message. The length of the fill text is equal to the call variable
stored in the variable=N parameter. By default the text is a sequence
of X’s, but can be controlled with the text=”text” parameter.

[users]

	Description

	If the -users command line option is specified, then this keyword
contains the number of users that are currently instantiated.

[userid]

	Description

	If the -users command line option is specified, then this keyword
containst he integer identifier of the current user (starting at zero
and ending at [users-1]).

Actions

In a recv or recvCmd command, you have the possibility to execute
an action. Several actions are available:

	Regular expressions (ereg)

	Log something in aa log file (log)

	Execute an external (system), internal (int_cmd) or
pcap_play_audio/pcap_play_video command (exec)

	Manipulate double precision variables using arithmetic

	Assign string values to a variable

	Compare double precision variables

	Jump to a particular scenario index

	Store the current time into variables

	Lookup a key in an indexed injection file

	Verify Authorization credentials

	Change a Call’s Network Destination

Regular expressions

Using regular expressions in SIPp allows to

	Extract content of a SIP message or a SIP header and store it for
future usage (called re-injection)

	Check that a part of a SIP message or of an header is matching an
expected expression

Regular expressions used in SIPp are defined per ` Posix Extended
standard (POSIX 1003.2)`_. If you want to learn how to write regular
expressions, I will recommend this ` regexp tutorial`_.

Here is the syntax of the regexp action:

regexp action syntax

	Keyword

	Default

	Description

	regexp

	None

	Contains the regexp to use for
matching the received message or header. MANDATORY.

	search_in

	msg

	can have four values: “msg” (try to match against the entire message),
“hdr” (try to match against a specific SIP header), “body” (try to
match against the SIP message body), or “var” (try to match against a
SIPp string variable).

	header

	None

	Header to try to match against.
Only used when the search_in tag is set to hdr. MANDATORY IF search_in
is equal to hdr.

	variable

	None

	Variable to try to match against. Only
used when the search_in tag is set to var. MANDATORY IF search_in is
equal to var.

	case_indep

	false

	To look for a header ignoring case .
Only used when the search_in tag is set to hdr.

	occurrence

	1

	To find the nth occurrence of a header. Only used when the search_in tag is set
to hdr.

	start_line

	false

	To look only at start of line. Only used when
the search_in tag is set to hdr.

	check_it

	false

	if set to true, the
call is marked as failed if the regexp doesn’t match. Can not be
combined with check_it_inverse.

	check_it_inverse

	false

	Inverse of
check_it. iff set to true, the call is marked as failed if the regexp
does match. Can not be combined with check_it.

	assign_to

	None

	contain
the variable id (integer) or a list of variable id which will be used
to store the result(s) of the matching process between the regexp and
the message. Those variables can be re-used at a later time either by
using ‘[$n]’ in the scenario to inject the value of the variable in
the messages or by using the content of the variables for conditional
branching. The first variable in the variable list of assign_to
contains the entire regular expression matching. The following
variables contain the sub-expressions matching.

Example for assign_to

<ereg regexp="o=([[:alnum:]]*) ([[:alnum:]]*) ([[:alnum:]]*)"
 search_in="msg"
 check_it=i"true"
 assign_to="3,4,5,8"/>

If the SIP message contains the line

o=user1 53655765 2353687637 IN IP4 127.0.0.1

variable 3 contains “o=user1 53655765 2353687637”, variable 4 contains
“user1”, variable 5 contains “53655765” and variable 8 contains
“2353687637”.
Note that you can have several regular expressions in one action.

The following example is used to:

	First action:

	Extract the first IPv4 address of the received SIP message

	Check that we could actually extract this IP address (otherwise call
will be marked as failed)

	Assign the extracted IP address to call variables 1 and 2.

	Second action:

	Extract the Contact: header of the received SIP message

	Assign the extracted Contract: header to variable 6.

<recv response="200" start_rtd="true">
 <action>
 <ereg regexp="([0-9]{1,3}\.){3}[0-9]{1,3}:[0-9]*" search_in="msg" check_it="true" assign_to="1,2" />
 <ereg regexp=".*" search_in="hdr" header="Contact:" check_it="true" assign_to="6" />
 </action>
</recv>

Log a message

The “log” action allows you to customize your traces. Messages are
printed in the <scenario file name>_<pid>_logs.log file. Any keyword
is expanded to reflect the value actually used.

Warning

Logs are generated only if -trace_logs option is set on the command line.

Example:

<recv request="INVITE" crlf="true" rrs="true">
 <action>
 <ereg regexp=".*" search_in="hdr" header="Some-New-Header:" assign_to="1" />
 <log message="From is [last_From]. Custom header is [$1]"/>
 </action>
</recv>

You can use the alternative “warning” action to log a message to
SIPp’s error log. For example:

<warning message="From is [last_From]. Custom header is [$1]"/>

Execute a command

The “exec” action allows you to execute “internal”, “external”,
“play_pcap_audio” or “play_pcap_video” commands.

Internal commands

Internal commands (specified using int_cmd attribute) are stop_call,
stop_gracefully (similar to pressing ‘q’), stop_now (similar to
ctrl+C).

Example that stops the execution of the script on receiving a 603
response:

<recv response="603" optional="true">
 <action>
 <exec int_cmd="stop_now"/>
 </action>
</recv>

External commands

External commands (specified using command attribute) are anything
that can be executed on local host with a shell.

Example that execute a system echo for every INVITE received:

<recv request="INVITE">
 <action>
 <exec command="echo [last_From] is the from header received >> from_list.log"/>
 </action>
</recv>

Media/RTP commands

RTP streaming allows you to stream audio from a PCMA, PCMU, G722,
iLBC or G729-encoded audio file (e.g. a .wav file). The “rtp_stream”
action controls this.

	<exec rtp_stream=”file.wav” /> will stream the audio contained in
file.wav, assuming it is a PCMA-format file.

	<exec rtp_stream=”[filename],[loopcount],[payloadtype]” /> will
stream the audio contained in [filename], repeat the stream
[loopcount] times (the default is 1, and -1 indicates it will repeat
forever), and will treat the audio as being of [payloadtype] (where 8
is the default of PCMA, 0 indicates PCMU, 9 indicates G722, 18
indicates G729 and 98 indicates iLBC in 30ms 13.33kbps).

	<exec rtp_stream=”pause” /> will pause any currently active
playback.

	<exec rtp_stream=”resume” /> will resume any currently paused
playback.

PCAP play commands (specified using play_pcap_audio / play_pcap_video
attributes) allow you to send a pre-recorded RTP stream using the
pcap library [https://www.tcpdump.org/manpages/pcap.3pcap.html].
Choose play_pcap_audio to send the pre-recorded RTP stream using the
“m=audio” SIP/SDP line port as a base for the replay.

Choose play_pcap_video to send the pre-recorded RTP stream using the
“m=video” SIP/SDP line port as a base.

The play_pcap_audio/video command has the following format:
play_pcap_audio=”[file_to_play]” with:

	file_to_play: the pre-recorded pcap file to play

The audio file should be the raw samples, example files are included
for PCMA, G722 and iLBC (mode=30).

	Codec

	Payload id

	Packet size

	Packet time

	FFMpeg arguments

	PCMU

	0

	160 bytes

	20 ms

	-f ulaw -ar 8k -ac 1

	PCMA

	8

	160 bytes

	20 ms

	-f alaw -ar 8k -ac 1

	G722

	9

	160 bytes

	20 ms

	-f g722 -ar 16k -ac 1

	G729

	18

	20 bytes

	20 ms

	not supported by ffmpeg

	iLBC

	98

	50 bytes

	30 ms

	-f ilbc -ar 8k -ac 1 -b:a 13.33k

Note

FFmpeg adds a header to iLBC files denoting the mode that is used, either 20
or 30 ms per packet. This header needs to be stripped from the file.

Note

The action is non-blocking. SIPp will start a light-weight thread to
play the file and the scenario with continue immediately. If needed,
you will need to add a pause to wait for the end of the pcap play.

Warning

A known bug means that starting a pcap_play_audio command will end any
pcap_play_video command, and vice versa; you cannot play both audio
and video streams at once.

Example that plays a pre-recorded RTP stream:

<nop>
 <action>
 <exec play_pcap_audio="pcap/g711a.pcap"/>
 </action>
</nop>

Variable Manipulation

You may also perform simple arithmetic (add, subtract, multiply,
divide) on floating point values. The “assign_to” attribute contains
the first operand, and is also the destination of the resulting value.
The second operand is either an immediate value or stored in a
variable, represented by the “value” and “variable” attributes,
respectively.

SIPp supports call variables that take on double-precision floating
values. The actions that modify double variables all write to the
variable referenced by the assign_to parameter. These variables can be
assigned using one of three actions: assign, sample, or todouble. For
assign, the double precision value is stored in the “value” parameter.
The sample action assigns values based on statistical distributions,
and uses the same parameters as a statistically distributed pauses.
Finally, the todouble command converts the variable referenced by the
“variable” attribute to a double before assigning it.

For example, to assign the value 1.0 to $1 and sample from the
normal distribution into $2:

<nop>
 <action>
 <assign assign_to="1" value="1" />
 <sample assign_to="2" distribution="normal" mean="0" stdev="1"/>
 <!-- Stores the first field in the injection file into string variable $3.
 You may also use regular expressions to store string variables. -->
 <assignstr assign_to="3" value="[field0]" />
 <!-- Converts the string value in $3 to a double-precision value stored in $4. -->
 <todouble assign_to="4" variable="3" />
 </action>
</nop>

Simple arithmetic is also possible using the <add> , <subtract> ,
<multiply> , and <divide> actions, which add, subtract, multiply, and
divide the variable referenced by assign_to by the value in value .
For example, the following action modifies variable one as follows:

<nop>
 <action>
 <assign assign_to="1" value="0" /> <!-- $1 == 0 -->
 <add assign_to="1" value="2" /> <!-- $1 == 2 -->
 <subtract assign_to="1" value="3" /> <!-- $1 == -1 -->
 <multiply assign_to="1" value="4" /> <!-- $1 == -4 -->
 <divide assign_to="1" value="5" /> <!-- $1 == -0.8 -->
 </action>
</nop>

Rather than using fixed values, you may also retrieve the second
operand from a variable, using the <variable> parameter. For example:

<nop>
 <action>
 <!-- Multiplies $1 by itself -->
 <multiply assign_to="1" variable="1" />
 <!-- Divides $1 by $2, Note that $2 must not be zero -->
 <multiply assign_to="1" variable="2" />
 </action>
</nop>

String Variables

You can create string variables by using the <assignstr> command,
which accepts two parameters: assign_to and value . The value may
contain any of the same substitutions that a message can contain. For
example:

<nop>
 <action>
 <!-- Assign the value in field0 of the CSV file to a $1. -->
 <assignstr assign_to="1" value="[field0]" />
 </action>
</nop>

A string variable and a value can be compared using the <strcmp>
action. The result is a double value, that is less than, equal to, or
greater than zero if the variable is lexographically less than, equal
to, or greater than the value. The parameters are assign_to, variable,
and value. For example:

<nop>
 <action>
 <!-- Compare the value of $strvar to "Hello" and assign it to $result.. -->
 <strcmp assign_to="result" variable="strvar" value="Hello" />
 </action>
</nop>

Variable Testing

Variable testing allows you to construct loops and control structures
using call variables. THe test action takes four arguments: variable
which is the variable that to compare against value , and assign_to
which is a boolean call variable that the result of the test is stored
in. Compare may be one of the following tests: equal , not_equal ,
greater_than , less_than , greater_than_equal , or less_than_equal .

Example that sets $2 to true if $1 is less than 10:

<nop>
 <action>
 <test assign_to="2" variable="1" compare="less_than" value="10" />
 </action>
</nop>

lookup

The lookup action is used for indexed injection files (see indexed
injection files). The lookup action takes a file and key as input and
produces an integer line number as output. For example the following
action extracts the username from an authorization header and uses it
to find the corresponding line in users.csv.

<recv request="REGISTER">
 <action>
 <ereg regexp="Digest .*username=\"([^\"]*)\"" search_in="hdr" header="Authorization:" assign_to="junk,username" />
 <lookup assign_to="line" file="users.csv" key="[$username]" />
 </action>
</recv>

Updating In-Memory Injection files

Injection files, particularly when an index is defined can serve as an
in-memory data store for your SIPp scenario. The <insert> and
<replace> actions provide a method of programmatically updating SIPp’s
in-memory version of an injection file (there is presently no way to
update the disk-based version). The insert action takes two
parameters: file and value, and the replace action takes an additional
line value. For example, to inserting a new line can be accomplished
as follows:

<nop display="Insert User">
 <action>
 <insert file="usersdb.conf" value="[$user];[$calltype]" />
 </action>
</nop>

Replacing a line is similar, but a line number must be specified. You
will probably want to use the lookup action to obtain the line number
for use with replace as follows:

<nop display="Update User">
 <action>
 <lookup assign_to="index" file="usersdb.conf" key="[$user]" />
 <!-- Note: This assumes that the lookup always succeeds. -->
 <replace file="usersdb.conf" line="[$index]" value="[$user];[$calltype]" />
 </action>
</nop>

Jumping to an Index

You can jump to an arbitrary scenario index using the <jump> action.
This can be used to create rudimentary subroutines. The caller can
save their index using the [msg_index] substitution, and the callee
can jump back to the same place using this action. If there is a
special label named “_unexp.main” in the scenario, SIPp will jump to
that label whenever an unexpected message is received and store the
previous address in the variable named “_unexp.retaddr”.

Example that jumps to index 5:

<nop>
 <action>
 <jump value="5" />
 </action>
</nop>

Example that jumps to the index contained in the variable named
_unexp.retaddr:

<nop>
 <action>
 <jump variable="_unexp.retaddr" />
 </action>
</nop>

gettimeofday

The gettimeofday action allows you to get the current time in seconds
and microseconds since the epoch. For example:

<nop>
 <action>
 <gettimeofday assign_to="seconds,microseconds" />
 </action>
</nop>

setdest

The setdest action allows you to change the remote end point for a
call. The parameters are the transport, host, and port to connect the
call to. There are certain limitations baed on SIPp’s design: you can
not change the transport for a call; and if you are using TCP then
multi-socket support must be selected (i.e. -t tn must be specified).
Also, be aware that frequently using setdest may reduce SIPp’s
capacity as name resolution is a blocking operation (thus potentially
causing SIPp to stall while looking up host names). This example
connects to the value specified in the [next_url] keyword.

<nop>
 <action>
 <assignstr assign_to="url" value="[next_url]" />
 <ereg regexp="sip:.*@([0-9A-Za-z\.]+):([0-9]+);transport=([A-Z]+)" search_in="var" check_it="true" assign_to="dummy,host,port,transport" variable="url" />
 <setdest host="[$host]" port="[$port]" protocol="[$transport]" />
 </action>
</nop>

Warning

If you are using setdest with IPv6, you must not use square brackets
around the address. These have a special meaning to SIPp, and it will
try to interpret your IPv6 address as a variable.
Since the port is specified separately, square brackets are never
necessary.

verifyauth

The verifyauth action checks the Authorization header in an incoming
message against a provided username and password. The result of the
check is stored in a boolean variable. This allows you to simulate a
server which requires authorization. Currently only simple MD5 digest
authentication is supported. Before using the verifyauth action, you
must send a challenge. For example:

<recv request="REGISTER" />
<send>
 <![CDATA[

 SIP/2.0 401 Authorization Required
 [last_Via:]
 [last_From:]
 [last_To:];tag=[pid]SIPpTag01[call_number]
 [last_Call-ID:]
 [last_CSeq:]
 Contact: <sip:[local_ip]:[local_port];transport=[transport]>
 WWW-Authenticate: Digest realm="test.example.com", nonce="47ebe028cda119c35d4877b383027d28da013815"
 Content-Length: [len]

]]>
</send>

After receiving the second request, you can extract the username
provided and compare it against a list of user names and passwords
provided as an injection file, and take the appropriate action based
on the result:

<recv request="REGISTER">
 <action>
 <ereg regexp="Digest .*username=\"([^\"]*)\"" search_in="hdr" header="Authorization:" assign_to="junk,username" />
 <lookup assign_to="line" file="users.conf" key="[$username]" />
 <verifyauth assign_to="authvalid" username="[field0 line=\"[$line]\"]" password="[field3 line=\"[$line]\"]" />
 </action>
</recv>

<nop hide="true" test="authvalid" next="goodauth" />
<nop hide="true" next="badauth" />

Variables

For complex scenarios, you will need to store bits of information that
can be used across messages or even calls. Like other programming
languages, SIPp’s XML scenario definition allows you to use variables
for this purpose. A variable in SIPp is referenced by an alphanumeric
name. In past versions of SIPp, variables names were numeric only;
thus in this document and the embedded scenarios, you are likely to
see lots of variables of the form “1”, “2”, etc.; although when
creating new scenarios you are encouraged to assign meaningful names
to your variables.

Aside from a name, SIPp’s variables are also loosely typed. The type
of a variable is not explicitly declared, but is instead inferred from
the action that set it. There are four types of variables: string,
regular expression matches, doubles, and booleans. All mathematical
operations take place on doubles. The <test> and <verifyauth> actions
create boolean values. String variables and regular expression matches
are similar. When a string’s value is called for, a regular expression
match can be substituted. The primary difference is related to the
test attribute (see Conditional branching). If a string has been
defined, a test is evaluated to true. However, for a regular
expression variable, the regular expression that set it must match for
the test to evaluated to true. Values can be converted to strings
using the <assignstr> action. Values can be converted to doubles using
the <todouble> action.

Variables also have a scope, which is one of global to all calls, per-
user, or the default per-call. A global variable can be used, for
example to store scenario configuration parameters or to keep a global
counter. A user-variable when combined with the -users option allows
you to keep per-user state across calls (e.g., if this user has
already registered). Finally, the default per-call variables are
useful for copying values from one SIP message to the next or
controlling branching. Variables can be declared globally or per-user
using the following syntax:

<Global variables="foo,bar" />
<User variables="baz,quux" />

Local variables need not be declared. To prevent programming errors,
SIPp performs very rudimentary checks to ensure that each variable is
used more than once in the scenario (this helps prevent some typos
from turning into hard to debug errors). Unfortunately, this can cause
some complication with regular expression matching. The regular
expression action must assign the entire matched expression to a
variable. If you are only interested in checking the validity of the
expression (i.e. the check_it attribute is set) or in capturing a sub-
expression, you must still assign the entire expression to a variable.
As this variable is likely only referenced once, you must inform SIPp
that you are knowingly using this variable once with a Reference
clause. For example:

<recv request="INVITE">
 <action>
 <ereg regexp="<sip:([^;@]*)" search_in="hdr" header="To:" assign_to="dummy,uri" />
 </action>
</recv>
<Reference variables="dummy" />

Injecting values from an external CSV during calls

You can use “-inf file_name” as a command line parameter to input
values into the scenarios. The first line of the file should say
whether the data is to be read in sequence (SEQUENTIAL), random order
(RANDOM), or in a user based manner (USER). Each line corresponds to
one call and has one or more ‘;’ delimited data fields and they can be
referred as [field0], [field1], … in the xml scenario file. Example:

SEQUENTIAL
#This line will be ignored
Sarah;sipphone32
Bob;sipphone12
#This line too
Fred;sipphone94

Will be read in sequence (first call will use first line, second call
second line). At any place where the keyword “[field0]” appears in the
scenario file, it will be replaced by either “Sarah”, “Bob” or “Fred”
depending on the call. At any place where the keyword “[field1]”
appears in the scenario file, it will be replaced by either
“sipphone32” or “sipphone12” or “sipphone94” depending on the call. At
the end of the file, SIPp will re-start from the beginning. The file
is not limited in size.

You can override the default line selection strategy with the optional
line argument. For example:

[field0 line=1]

Selects the second line in the file (the first line is line zero. The
line parameters support keywords in the argument, so in conjunction
with a lookup action it is possible to select values based on a key.

The CSV file can contain comment lines. A comment line is a line that
starts with a “#”.

As a picture says more than 1000 words, here is one:

[image: ../_images/sipp-02.gif]
Think of the possibilities of this feature. They are huge.

It is possible to use more than one injection file, and is necessary
when you want to select different types of data in different ways. For
example, when running a user-based benchmark, you may have a
caller.csv with “USER” as the first line and a callee.csv with
“RANDOM” as the first line. To specify which CSV file is used, add the
file= parameter to the keyword. For example:

INVITE sip:[field0 file="callee.csv"] SIP/2.0
From: sipp user <[field0 file="caller.csv"]>;tag=[pid]SIPpTag00[call_number]
To: sut user <[field0 file="callee.csv"]>
...

Will select the destination user from callee.csv and the sending user
from caller.csv. If no file parameter is specified, then the first
input file on the command line is used by default.

PRINTF Injection files

An extension of the standard injection file is a “PRINTF” injection
file. Often, an input file will has a repetitive nature such as:

USERS
user000;password000
user001;password001
...
user999;password999

SIPp must maintain this structure in memory, which can reduce
performance for very large injection files. To eliminate this problem,
SIPp can automatically generate such a structured file based on one or
more template lines. For example:

USERS,PRINTF=999
user%03d;password%03d

Has the same logical meaning as the original example, yet SIPp only
needs to store one entry in memory. Each time a line is used; SIPp
will replace %d with the requested line number (starting from zero).
Standard printf format decimal specifiers can be used. When more than
one template line is available, SIPp cycles through them. This
example:

USERS,PRINTF=4
user%03d;password%03d;Foo
user%03d;password%03d;Bar

Is equivalent to the following injection file:

USERS
user000;password000;Foo
user001;password001;Bar
user002;password002;Foo
user003;password003;Bar

The following parameters are used to control the behavior of printf
injection files:

Printf Injection File Parameters

Parameter Description Example PRINTF How many virtual lines exist in
this file. PRINTF=10, creates 10 virtual lines PRINTFMULTIPLE Multiple
the virtual line number by this value before generating the
substitutions used. PRINTF=10,PRINTFMULTIPLE=2 creates 10 virtual
lines numbered 0,2,4,…,18. PRINTFOFFSET Add this value to the
virtual line number before generating the substitutions used (applied
after PRINTFMULTIPLE). PRINTF=10,PRINTFOFFSET=100 creates 10 virtual
lines numbered 100-109. PRINTF=10,PRINTFMULTIPLE=2,PRINTFOFFSET=10
creates 10 users numbered 10,12,14,…28.

Indexing Injection files

The -infindex option allows you to generate an index of an injection
file. The arguments to -infindex are the injection file to index and
the field number that should be indexed. For example if you have an
injection file that contains user names and passwords (as the
following):

USERS
alice,pass_A
bob,pass_B
carol,pass_C

You may want to extract the password for a given user in the file. To do this
efficiently, SIPp must build an index for the first field (0). Thus you would
pass the argument -infindex users.csv 0 (assuming the file basename is
users.csv). SIPp will create an index that contains the logical entries
{"alice" => 0, "bob" => 1, "carol" => 2}. To extract a particular password,
you can use the lookup action to store the line number into a variable (say
$line) and then use the keyword [field1 line="[$line]"].

Conditional branching

Conditional branching in scenarios

It is possible to execute a scenario in a non-linear way. You can jump
from one part of the scenario to another for example when a message is
received or if a call variable is set.

You define a label (in the xml) as <label id=”n”/> Where n is a number
between 1 and 19 (we can easily have more if needed). The label
commands go anywhere in the main scenario between other commands. To
any action command (send, receive, pause, etc.) you add a next=”n”
parameter, where n matches the id of a label. When it has done the
command it continues the scenario from that label. This part is useful
with optional receives like 403 messages, because it allows you to go
to a different bit of script to reply to it and then rejoin at the BYE
(or wherever or not).

Alternatively, if you add a test=”m” parameter to the next, it goes to
the label only if variable [$m] is set. This allows you to look for
some string in a received packet and alter the flow either on that or
a later part of the script. The evaluation of a test varies based on
the type of call variable. For regular expressions, at least one match
must have been found; for boolean variables the value must be true;
and for all others a value must have been set (currently this only
applies to doubles). For more complicated tests, see the <test>
action.

Warning

If you add special cases at the end, dont forget to put a label at the
real end and jump to it at the end of the normal flow.

Example:

The following example corresponds to the embedded ‘branchc’ (client
side) scenario. It has to run against the embedded ‘branchs’ (server
side) scenario.

[image: ../_images/branching_01.gif]
[image: ../_images/branching_02.gif]

Randomness in conditional branching

To have SIPp behave somewhat more like a “normal” SIP client being
used by a human, it is possible to use “statistical branching”.
Wherever you can have a conditional branch on a variable being set
(test=”4”), you can also branch based on a statistical decision using
the attribute “chance” (e.g. chance=”0.90”). Chance can have a value
between 0 (never) and 1 (always). “test” and “chance” can be combined,
i.e. only branching when the test succeeds and the chance is good.

With this, you can have a variable reaction in a given scenario (e.g..
answer the call or reject with busy), or run around in a loop (e.g.
registrations) and break out of it after some random number of
iterations.

SIP authentication

SIPp supports SIP authentication. Two authentication algorithm are
supported: Digest/MD5 (“algorithm=”MD5”“) and Digest/AKA
(“algorithm=”AKAv1-MD5”“, as specified by 3GPP for IMS).

Enabling authentication is simple. When receiving a 401 (Unauthorized)
or a 407 (Proxy Authentication Required), you must add auth=”true” in
the <recv> command to take the challenge into account. Then, the
authorization header can be re-injected in the next message by using
[authentication] keyword.

Computing the authorization header is done through the usage of the
“[authentication]” keyword. Depending on the algorithm (“MD5” or
“AKAv1-MD5”), different parameters must be passed next to the
authentication keyword:

	Digest/MD5 (example: [authentication username=joe password=schmo])

	username : username: if no username is specified, the username is
taken from the ‘-au’ (authentication username) or ‘-s’ (service)
command line parameter

	password : password: if no password is specified, the password is
taken from the ‘-ap’ (authentication password) command line parameter

	Digest/AKA: (example: [authentication username=HappyFeet
aka_OP=0xCDC202D5123E20F62B6D676AC72CB318
aka_K=0x465B5CE8B199B49FAA5F0A2EE238A6BC aka_AMF=0xB9B9])

	username : username: if no username is specified, the username is
taken from the ‘-au’ (authentication username) or ‘-s’ (service)
command line parameter

	aka_K : Permanent secret key. If no aka_K is provided, the
“password” attributed is used as aka_K.

	aka_OP : OPerator variant key

	aka_AMF : Authentication Management Field (indicates the algorithm
and key in use)

In case you want to use authentication with a different
username/password or aka_K for each call, you can do this:

	Make a CSV like this:

SEQUENTIAL
User0001;[authentication username=joe password=schmo]
User0002;[authentication username=john password=smith]
User0003;[authentication username=betty password=boop]

	And an XML like this (the [field1] will be substituted with the full
auth string, which is the processed as a new keyword):

<send retrans="500">
 <![CDATA[

 REGISTER sip:[remote_ip] SIP/2.0
 Via: SIP/2.0/[transport] [local_ip]:[local_port]
 To: <sip:[field0]@sip.com:[remote_port]>
 From: <sip:[field0]@[remote_ip]:[remote_port]>
 Contact: <sip:[field0]@[local_ip]:[local_port]>;transport=[transport]
 [field1]
 Expires: 300
 Call-ID: [call_id]
 CSeq: 2 REGISTER
 Content-Length: 0

]]>
</send>

Example:

<recv response="407" auth="true">
</recv>

<send>
 <![CDATA[

 ACK sip:[service]@[remote_ip]:[remote_port] SIP/2.0
 Via: SIP/2.0/[transport] [local_ip]:[local_port]
 From: sipp <sip:sipp@[local_ip]:[local_port]>;tag=[call_number]
 To: sut <sip:[service]@[remote_ip]:[remote_port]>[peer_tag_param]
 Call-ID: [call_id]
 CSeq: 1 ACK
 Contact: sip:sipp@[local_ip]:[local_port]
 Max-Forwards: 70
 Subject: Performance Test
 Content-Length: 0

]]>
</send>

<send retrans="500">
 <![CDATA[

 INVITE sip:[service]@[remote_ip]:[remote_port] SIP/2.0
 Via: SIP/2.0/[transport] [local_ip]:[local_port]
 From: sipp <sip:sipp@[local_ip]:[local_port]>;tag=[call_number]
 To: sut <sip:[service]@[remote_ip]:[remote_port]>
 Call-ID: [call_id]
 CSeq: 2 INVITE
 Contact: sip:sipp@[local_ip]:[local_port]
 [authentication username=foouser]
 Max-Forwards: 70
 Subject: Performance Test
 Content-Type: application/sdp
 Content-Length: [len]

 v=0
 o=user1 53655765 2353687637 IN IP[local_ip_type] [local_ip]
 s=-
 t=0 0
 c=IN IP[media_ip_type] [media_ip]
 m=audio [media_port] RTP/AVP 0
 a=rtpmap:0 PCMU/8000

]]>
</send>

Initialization Stanza

Some complex scenarios require setting appropriate global variables at
SIPp startup. The initialization stanza allows you do do just that. To
create an initialization stanza, simply surround a series of <nop> and
<label> commands with <init> and </init>. These <nop>s are executed
once at SIPp startup. The variables within the init stanza, except for
globals, are not shared with calls. For example, this init stanza sets
$THINKTIME to 1 if it is not already set (e.g., by the -set command
line parameter).

<init>
 <!-- By Default THINKTIME is true. -->
 <nop>
 <action>
 <strcmp assign_to="empty" variable="THINKTIME" value="" />
 <test assign_to="empty" compare="equal" variable="empty" value="0" />
 </action>
 </nop>
 <nop condexec="empty">
 <action>
 <assignstr assign_to="THINKTIME" value="1" />
 </action>
 </nop>
</init>

3PCC Extended

An extension of the 3pcc mode is implemented in SIPp. This feature
allows any number of SIPp instances to communicate with each other,
each one of them being connected to a remote host.

The SIPp instance which initiates the call is launched in “master”
mode. The others are launched in “slave” mode. Slave SIPp instances
have names, given in the command line (for example, s1, s2…sN for
the slaves and m for the master) Correspondances between instances
names and their addresses must be stored in a file (provided by
-slave_cfg command line argument), in the following format:

s1;127.0.0.1:8080
s2;127.0.0.1:7080
m;127.0.0.1:6080

Each SIPp instance must access a different copy of this file.

sendCmd and recvCmd have additional attributes:

<sendCmd dest="s1">
 <![CDATA[
 Call-ID: [call_id]
 From: m
 [$1]

]]>
</sendCmd>

Will send a command to the “s1” peer instance, which can be either
master or slave, depending on the command line argument, which must be
consistent with the scenario: a slave instance cannot have a sendCmd
action before having any recvCmd. Note that the message must contain a
“From” field, filled with the name of the sender.

<recvCmd src="m">
 <action>
 <ereg regexp="Content-Type:.*"
 search_in="msg"
 assign_to="2"/>
 </action>
</recvCmd>

Indicates that the twin command is expected to be received from the
“m” peer instance.

Note that the master must be the launched at last.

There is no integrated scenarios for the 3pcc extended mode, but you
can easily adapt those from 3pcc.

Example: the following drawing illustrate the entire procedure.
The arrows that are shown between SIPp master and slaves depict only
the synchronization commands exchanged between the different SIPp
instances. The SIP message exchange takes place as usual.

[image: _images/master_slave.png]

Controlling SIPp

SIPp can be controlled interactively through the keyboard or via a UDP
socket. SIPp supports both ‘hot’ keys that can be entered at any time
and also a simple command mode. The hot keys are:

	Key

	Action

	+

	Increase the call rate by 1 * rate_scale

	*

	Increase the call rate by 10 * rate_scale

	-

	Decrease the call rate by 1 * rate_scale

	/

	Decrease the call rate by 10 * rate_scale

	c

	Enter command mode

	q

	Quit SIPp (after all calls complete, enter a second time to quit immediately)

	Q

	Quit SIPp immediately s Dump screens to the log file (if -trace_screen is passed)

	p

	Pause traffic

	1

	Display the scenario screen

	2

	Display the statistics screen

	3

	Display the repartition screen

	4

	Display the variable screen

	5

	Display the TDM screen

	6-9

	Display the second through fifth repartition screen.

In command mode, you can type a single line command that instructs
SIPp to take some action. Command mode is more versatile than the hot
keys, but takes more time to input some common actions. The following
commands are available:

List of Interactive Commands

	dump tasks Prints a list of active tasks (most tasks are calls) to the error log. dump tasks

	set rate X Sets the call rate. set rate 10

	set rate-scale X Sets the rate scale, which adjusts the speed of ‘+’, ‘-‘, ‘*’, and ‘/’. set rate-scale 10

	set users X Sets the number of users (only valid when -users is specified). set rate 10

	set limit X Sets the open call limit (equivalent to -l option) set limit 100

	set hide <true|false> Should the hide XML attribute be respected? set hide false

	set index <true|false> Display message indexes in the scenario screen. set index true

	set display <main|ooc> Changes the scenario that is displayed to either the main or the out-of-call scenario. set display main set display ooc

	trace <log> <on|off> Turns log on or off at run time. Valid values for log are “error”, “logs”, “messages”, and “shortmessages”. trace error on

Traffic control

SIPp generates SIP traffic according to the scenario specified. You
can control the number of calls (scenario) that are started per
second. If you pass the -users option, then you need to control the
number of instantiated users. You can control the rate through:

	Interactive hot keys (described in the previous section)

	Interactive Commands

	Startup Parameters

There are two commands that control rates: set rate X sets the current
call rate to X. Additionally, set rate-scale X sets the rate_scale
parameter to X. This enables you to use the ‘+’, ‘-‘, ‘*’, and ‘/’
keys to set the rate more quickly. For example, if you do set rate-
scale 100, then each time you press ‘+’, the call rate is increased by
100 calls and each time you press ‘*’, the call rate is increased by
1000 calls. Similarly, for a user based benchmark you can run set
users X.

At starting time, you can control the rate by specifying parameters on
the command line:

	“-r” to specify the call rate in number of calls per seconds

	“-rp” to specify the ” r ate p eriod” in milliseconds for the call
rate (default is 1000ms/1sec). This allows you to have n calls every m
milliseconds (by using -r n -rp m).

Note

Example: run SIPp at 7 calls every 2 seconds (3.5 calls per second)

./sipp -sn uac -r 7 -rp 2000 127.0.0.1

You can also pause the traffic by pressing the ‘p’ key. SIPp will stop
placing new calls and wait until all current calls go to their end.
You can resume the traffic by pressing ‘p’ again.

To quit SIPp, press the ‘q’ key. SIPp will stop placing new calls and
wait until all current calls go to their end. SIPp will then exit.

You can also force SIPp to quit immediatly by pressing the ‘Q’ key.
Current calls will be terminated by sending a BYE or CANCEL message
(depending if the calls have been established or not). The same
behaviour is obtained by pressing ‘q’ twice.

Tip

You can place a defined number of calls and have SIPp exit when
this is done. Use the -m option on the command line.

Remote control

SIPp can be “remote-controlled” through a UDP socket. This allows for
example

	To automate a series of actions, like increasing the call rate
smoothly, wait for 10 seconds, increase more, wait for 1 minute and
loop

	Have a feedback loop so that an application under test can remote
control SIPp to lower the load, pause the traffic, …

Each SIPp instance is listening to a UDP socket. It starts to listen
to port 8888 and each following SIPp instance (up to 60) will listen
to base_port + 1 (8889, 8890, …).

It is then possible to control SIPp like this:

echo p >/dev/udp/x.y.z.t/8888 -> put SIPp in pause state (p key)
echo q >/dev/udp/x.y.z.t/8888 -> quit SIPp (q key)

Note

All keys available through keyboard are also available in the remote
control interface

You could also have a small shell script to automate a serie of
action. For example, this script will increase the call rate by 10
more new calls/s every 5 seconds, wait at this call rate for one
minute and exit SIPp:

#!/bin/sh
echo "*" >/dev/udp/127.0.0.1/8889
sleep 5
echo "*" >/dev/udp/127.0.0.1/8889
sleep 5
echo "*" >/dev/udp/127.0.0.1/8889
sleep 5
echo "*" >/dev/udp/127.0.0.1/8889
sleep 60
echo "q" >/dev/udp/127.0.0.1/8889

To send a command to SIPp, preface it with ‘c’. For example: echo
"cset rate 100" >/dev/udp/127.0.0.1/8888 sets the call rate to 100.

Transport modes

SIPp has several transport modes. The default transport mode is “UDP
mono socket”.

UDP mono socket

In UDP mono socket mode (-t u1 command line parameter), one IP/UDP
socket is opened between SIPp and the remote. All calls are placed
using this socket.

This mode is generally used for emulating a relation between 2 SIP
servers.

UDP multi socket

In UDP multi socket mode (-t un command line parameter), one IP/UDP
socket is opened for each new call between SIPp and the remote.

This mode is generally used for emulating user agents calling a SIP
server.

UDP with one socket per IP address

In UDP with one socket per IP address mode (-t ui command line
parameter), one IP/UDP socket is opened for each IP address given in
the inf file.

In addition to the “-t ui” command line parameter, one must indicate
which field in the inf file is to be used as local IP address for this
given call. Use “-ip_field <nb>” to provide the field number.

There are two distinct cases to use this feature:

	Client side: when using -t ui for a client, SIPp will originate each
call with a different IP address, as provided in the inf file. In this
case, when your IP addresses are in field X of the inject file, then
you have to use [fieldX] instead of [local_ip] in your UAC XML
scenario file.

	Server side: when using -t ui for a server, SIPp will bind itself to
all the IP addresses listed in the inf file instead of using 0.0.0.0.
This will have the effect SIPp will answer the request on the same IP
on which it received the request. In order to have proper Contact and
Via fields, a keyword [server_ip] can be used and provides the IP
address on which a request was received. So when using this, you have
to replace the [local_ip] in your UAS XML scenario file by
[server_ip].

In the following diagram, the command line for a client scenario will
look like: ./sipp -sf myscenario.xml -t ui -inf database.csv -ip_field
2 192.168.1.1
By doing so, each new call will come sequentially from IP 192.168.0.1,
192.168.0.2, 192.168.0.3, 192.168.0.1, …

This mode is generally used for emulating user agents, using on IP
address per user agent and calling a SIP server.

TCP mono socket

In TCP mono socket mode (-t t1 command line parameter), one IP/TCP
socket is opened between SIPp and the remote. All calls are placed
using this socket.

This mode is generally used for emulating a relation between 2 SIP
servers.

TCP multi socket

In TCP multi socket mode (-t tn command line parameter), one IP/TCP
socket is opened for each new call between SIPp and the remote.

This mode is generally used for emulating user agents calling a SIP
server.

TCP reconnections

SIPp handles TCP reconnections. In case the TCP socket is lost, SIPp
will try to reconnect. The following parameters on the command line
control this behaviour:

	-max_reconnect : Set the maximum number of reconnection attempts.

	-reconnect_close true/false : Should calls be closed on reconnect?

	-reconnect_sleep int : How long to sleep (in milliseconds) between
the close and reconnect?

TLS mono socket

In TLS mono socket mode (-t l1 command line parameter), one secured
TLS (Transport Layer Security) socket is opened between SIPp and the
remote. All calls are placed using this socket.

This mode is generally used for emulating a relation between 2 SIP
servers.

Warning

When using TLS transport, SIPp will expect to have two files in the
current directory: a certificate (cacert.pem) and a key (cakey.pem).
If one is protected with a password, SIPp will ask for it.

SIPp supports X509’s CRL (Certificate Revocation List). The CRL is
read and used if -tls_crl command line specifies a CRL file to read.

TLS multi socket

In TLS multi socket mode (-t ln command line parameter), one secured
TLS (Transport Layer Security) socket is opened for each new call
between SIPp and the remote.

This mode is generally used for emulating user agents calling a SIP
server.

SCTP mono socket

In SCTP mono socket mode (-t s1 command line parameter), one SCTP
(Stream Transmission Control Protocol) socket is opened between SIPp
and the remote. All calls are placed using this socket.

This mode is generally used for emulating a relation between 2 SIP
servers.

The -multihome, -heartbeat, -assocmaxret, -pathmaxret, -pmtu and
-gracefulclose command-line arguments allow control over specific
features of the SCTP protocol, but are usually not necessary.

SCTP multi socket

In SCTP multi socket mode (-t sn command line parameter), one SCTP
socket is opened for each new call between SIPp and the remote.

This mode is generally used for emulating user agents calling a SIP
server.

IPv6 support

SIPp includes IPv6 support. To use IPv6, just specify the local IP
address (-i command line parameter) to be an IPv6 IP address.

The following example launches a UAS server listening on port 5063 and
a UAC client sending IPv6 traffic to that port.

./sipp -sn uas -i [fe80::204:75ff:fe4d:19d9] -p 5063
./sipp -sn uac -i [fe80::204:75ff:fe4d:19d9] [fe80::204:75ff:fe4d:19d9]:5063

Warning

The Pcap play feature may currently not work on IPv6.

Multi-socket limit

When using one of the “multi-socket” transports, the maximum number of
sockets that can be opened (which corresponds to the number of
simultaneous calls) will be determined by the system (see how to
increase file descriptors section to modify those limits). You can
also limit the number of socket used by using the -max_socket command
line option. Once the maximum number of opened sockets is reached, the
traffic will be distributed over the sockets already opened.

Handling media with SIPp

SIPp is originally a signalling plane traffic generator. There is a
limited support of media plane (RTP).

RTP echo

The “RTP echo” feature allows SIPp to listen to one or two local IP
address and port (specified using -mi and -mp command line parameters)
for RTP media. Everything that is received on this address/port is
echoed back to the sender.

RTP/UDP packets coming on this port + 2 are also echoed to their
sender (used for sound and video echo).

RTP streaming

SIPp can play a PCMA, PCMU, G722, iLBC or G729-encoded audio file over
RTP.

More details on how to do this can be found in the action reference
section.

PCAP Play

The PCAP play feature makes use of the PCAP library [https://www.tcpdump.org/manpages/pcap.3pcap.html] to replay pre-
recorded RTP streams towards a destination. RTP streams can be
recorded by tools like Wireshark or tcpdump. This allows you to:

	Play any RTP stream (voice, video, voice+video, out of band
DTMFs/RFC 2833 [https://tools.ietf.org/html/rfc2833.html], T38 fax, …)

	Use any codec as the codec is not handled by SIPp

	Emulate precisely the behavior of any SIP equipment as the pcap play
will try to replay the RTP stream as it was recorded (limited to the
performances of the system).

	Reproduce exactly what has been captured using an IP sniffer like
Wireshark.

A good example is the UAC with media (uac_pcap) embedded scenario.

SIPp comes with a G711 alaw pre-recorded pcap file and out of band
(RFC 2833 [https://tools.ietf.org/html/rfc2833.html]) DTMFs in the pcap/ directory.

Warning

The PCAP play feature uses pthread_setschedparam calls from pthread
library. Depending on the system settings, you might need to be root
to allow this. Please check “man 3 pthread_setschedparam” man page for
details

More details on the possible PCAP play actions can be found in the
action reference section.

Statistics

Response times

Response times can be gathered and reported. Response time names can
be arbitrary strings, but for backwards compatibility the value “true”
is treated as if it were named “1”. Each response time can be used to
compute time between two SIPp commands (send, recv or nop). You can
start a timer by using the start_rtd attribute and stop it using the
rtd attribute.

You can view the value of those timers in the SIPp interface by
pressing 3, 6, 7, 8 or 9. You can also save the values in a CSV file
using the -trace_stat option (see below).

If the -trace_rtt option is set, the response times are also dumped in
the >scenario file name<_>pid<_rtt.csv.

Each line represents a RTD measure (triggered by a message reception
with a rtd=”n” attribute). The dump frequency is tuned by the
-rtt_freq parameter.

Available counters

The -trace_stat option dumps all statistics in the
scenario_name_pid.csv file. The dump starts with one header line with
all counters. All following lines are ‘snapshots’ of statistics
counter given the statistics report frequency (-fd option). When SIPp
exits, the last values of the statistics are also dumped in this file.

This file can be easily imported in any spreadsheet application, like
Excel.

In counter names, (P) means ‘Periodic’ - since last statistic row and
(C) means ‘Cumulated’ - since sipp was started.

Available statistics are:

	StartTime: Date and time when the test has started.

	LastResetTime: Date and time when periodic counters where last
reseted.

	CurrentTime: Date and time of the statistic row.

	ElapsedTime: Elapsed time.

	CallRate: Call rate (calls per seconds).

	IncomingCall: Number of incoming calls.

	OutgoingCall: Number of outgoing calls.

	TotalCallCreated: Number of calls created.

	CurrentCall: Number of calls currently ongoing.

	SuccessfulCall: Number of successful calls.

	FailedCall: Number of failed calls (all reasons).

	FailedCannotSendMessage: Number of failed calls because Sipp cannot
send the message (transport issue).

	FailedMaxUDPRetrans: Number of failed calls because the maximum
number of UDP retransmission attempts has been reached.

	FailedUnexpectedMessage: Number of failed calls because the SIP
message received is not expected in the scenario.

	FailedCallRejected: Number of failed calls because of Sipp internal
error. (a scenario sync command is not recognized or a scenario action
failed or a scenario variable assignment failed).

	FailedCmdNotSent: Number of failed calls because of inter-Sipp
communication error (a scenario sync command failed to be sent).

	FailedRegexpDoesntMatch: Number of failed calls because of regexp
that doesn’t match (there might be several regexp that don’t match
during the call but the counter is increased only by one).

	FailedRegexpShouldntMatch: Number of failed calls because of regexp
that shouldn’t match (there might be several regexp that shouldn’t
match during the call but the counter is increased only by one).

	FailedRegexpHdrNotFound: Number of failed calls because of regexp
with hdr option but no matching header found.

	FailedOutboundCongestion: Number of failed outgoing calls because of
TCP congestion.

	FailedTimeoutOnRecv: Number of failed calls because of a recv
timeout statement.

	FailedTimeoutOnSend: Number of failed calls because of a send
timeout statement.

	OutOfCallMsgs: Number of SIP messages received that cannot be
associated with an existing call.

	Retransmissions: Number of SIP messages being retransmitted.

	AutoAnswered: Number of unexpected specific messages received for
new Call-ID. The message has been automatically answered by a 200 OK
Currently, implemented for ‘PING’ message only.

The counters defined in the scenario are also dumped in the stat file.
Counters that have a numeric name are identified by the GenericCounter
columns.

In addition, two other statistics are gathered:

	ResponseTime (see previous section)

	CallLength: this is the time of the duration of an entire call.

Both ResponseTime and CallLength statistics can be tuned using
ResponseTimeRepartition and CallLengthRepartition commands in the
scenario.

The standard deviation (STDev) is also available in the log stat file
for these two statistics.

Detailed Message Counts

The SIPp screens provide detailed information about the number of
messages sent or recieved, retransmissions, messages lost, and the
number of unexpected messages for each scenario element. Although
these screens can be parsed, it is much simpler to parse a CSV file.
To produce a CSV file that contains the per-message information
contained in the main display screen pass the -trace_counts option.
Each column of the file represents a message and a particular count of
interest (e.g., “1_INVITE_Sent” or “2_100_Unexp”). Each row
corresponds to those statistics at a given statistics reporting
interval.

Error handling

SIPp has advanced feature to handle errors and unexpected events. They
are detailed in the following sections.

Unexpected messages

	When a SIP message that can be correlated to an existing call (with
the Call-ID: header) but is not expected in the scenario is received,
SIPp will send a CANCEL message if no 200 OK message has been received
or a BYE message if a 200 OK message has been received. The call will
be marked as failed. If the unexpected message is a 4XX or 5XX, SIPp
will send an ACK to this message, close the call and mark the call as
failed.

	When a SIP message that can’t be correlated to an existing call
(with the Call-ID: header) is received, SIPp will send a BYE message.
The call will not be counted at all.

	When a SIP “PING” message is received, SIPp will send an ACK message
in response. This message is not counted as being an unexpected
message. But it is counted in the “AutoAnswered” statistic counter.

	An unexpected message that is not a SIP message will be simply
dropped.

Retransmissions (UDP only)

A retransmission mechanism exists in UDP transport mode. To activate
the retransmission mechanism, the “send” command must include the
“retrans” attribute.

When it is activated and a SIP message is sent and no ACK or response
is received in answer to this message, the message is re-sent.

Note

The retransmission mechanism follows RFC 3261 [https://tools.ietf.org/html/rfc3261.html], section 17.1.1.2.
Retransmissions are differentiated between INVITE and non-INVITE
methods.

<send retrans=”500”>: will initiate the T1 timer to 500 milliseconds.

Even if retrans is specified in your scenarios, you can override this
by using the -nr command line option to globally disable the
retransmission mechanism.

Log files

There are several ways to trace what is going on during your SIPp
runs.

	You can log sent and received SIP messages in
<name_of_the_scenario>_<pid>_messages.log by using the command line
parameter -trace_msg. The messages are time-stamped so that you can
track them back.

	You also can trace it using the -trace_shortmsg parameter. This logs
the most important values of a message as CSV into one line of the
<scenario file name>_<pid>_shortmessages.log

	You can trace all unexpected messages or events in
<name_of_the_scenario>_<pid>_errors.log by using the command line
parameter -trace_err.

	You can trace the SIP response codes of unexpected messages in
<name_of_the_scenario>_<pid>_error_codes.log by using the command line
parameter -trace_error_codes.

	You can trace the counts from the main scenario screen in
<name_of_the_scenario>_<pid>_counts.csv by using the command line
parameter -trace_counts.

	You can trace the messages and state transitions of failed calls in
<name_of_the_scenario>_<pid>_calldebug.log using the -trace_calldebug
command line parameter. This is useful, because it has less overhead
than -trace_msg yet allows you to debug call flows that were not
completed successfully.

	You can save in a file the statistics screens, as displayed in the
interface. This is especially useful when running SIPp in background
mode. This can be done in different ways:

	When SIPp exits to get a final status report (-trace_screen option)

	On demand by using USR2 signal (example: kill -SIGUSR2 738)

	By pressing ‘s’ key (if -trace_screen option is set)

	If the -trace_logs option is set, you can use the <log> action to
print some scenario traces in the <scenario file name>_<pid>_logs.log
file. See the Log action section

SIPp can treat the messages, short messages, logs, and error logs as
ring buffers. This allows you to limit the total amount of space used
by these log files and keep only the most recent messages. To set the
maximum file size use the -ringbuffer_size option. Once the file
exceeds this size (the file size can be exceeded up to the size of a
single log message), it is rotated. SIPp can keep several of the most
recent files, to specify the number of files to keep use the
-ringbuffer_files option. The rotated files have a name of the form
<name_of_the_scenario>_<pid>_<logname>_<date>.log, where <date> is the
number of seconds since the epoch. If more than one log file is
rotated during a one second period, then the date is expressed as
<seconds.serial>, where serial is an increasing integer identifier.

Performance testing with SIPp

Advice to run performance tests with SIPp

SIPp has been originally designed for SIP performance testing.
Reaching high call rates and/or high number of simultaneous SIP calls
is possible with SIPp, provided that you follow some guidelines:

	Use a Linux system to reach high performances. The Windows port of
SIPp (through CYGWIN) cannot handle high performances.

	Limit the traces to a minimum (usage of -trace_msg, -trace_logs
should be limited to scenario debugging only)

	Understand internal SIPp’s scheduling mechanism and use the
-timer_resol, -max_recv_loops and -max_sched_loops command line
parameters to tune SIPp given the system it is running on.

Generally, running performance tests also implies measuring response
times. You can use SIPp’s timers (start_rtd, rtd in scenarios and
-trace_rtt command line option) to measure those response times. The
precision of those measures are entirely dependent on the timer_resol
parameter (as described in SIPp’s internal scheduling section). You
might want to use another “objective” method if you want to measure
those response times with a high precision (a tool like Wireshark
will allow you to do so).

SIPp’s internal scheduling

SIPp has a single-threaded event-loop architecture, which allows it to
handle high SIP traffic loads. SIPp’s event loop tracks various tasks,
most of which are the calls that are defined in your scenario. In
addition to tasks that represent calls there are several special
tasks: a screen update task, a statistics update task, a call opening
task, and a watchdog task. SIPp’s main execution loop consists of:

	Waking up tasks that have expired timers.

	Running up to max_sched_loop tasks that are in a running state
(each call is executed until it is no longer runnable).

	Handling each of the sockets in turn, reading max_recv_loops
messages from the various sockets.

SIPp executes this loop continuously, until some condition tells it to
stop (e.g., the user pressing the ‘q’ key or the global call limit or
timeout being reached).

Several parameters can be specified on the command line to fine tune
this scheduling.

	timer_resol: during the main loop, the management of calls
(management of wait, retransmission …) is done for all calls, every
“timer_resol” ms at best. The delay of retransmission must be higher
than “timer_resol”. The default timer resolution is 1 millisecond, and
that is the most precise resolution that SIPp currently supports. If
you increase this parameter, SIPp’s traffic will be burstier and you
are likely to encounter retransmissions at high load. If you have too
many calls, or each call takes too long, the timer resolution will not
be respected.

	max_recv_loops and max_sched_loops: received messages are read and
treated in batch. “max_recv_loops” is the maximum number of messages
that can be read at one time. “max sched loops” is the maximum number
of processing calls loops. These limits prevent SIPp from reading and
processing new messages from sockets to the exclusion of processing
existing calls, and vice versa. For heavy call rate, increase both
values. Be careful, those two parameters have a large influence on the
CPU occupation of SIPp.

	watchdog_interval, watchdog_minor_threshold,
watchdog_major_threshold, watchdog_minor_maxtriggers, and
watchdog_major_maxtriggers: The watchdog timer is designed to provide
feedback if your call load is causing SIPp’s scheduler to be
overwhelmed. The watchdog task sets a timer that should fire every
watchdog_interval milliseconds (by defualt 400ms). If the timer is not
serviced for more than watchdog_minor_threshold milliseconds (by
default 500s), then a “minor” trigger is recorded. If the number of
minor triggers is more than watchdog_minor_maxtriggers; the watchdog
task terminates SIPp. Similarly, if the timer is not serviced for more
than watchdog_major_threshold milliseconds (by default 3000ms), then a
major trigger is recorded; and if more than watchdog_major_maxtriggers
are recorded SIPp is terminated. If you only see occasional messages,
your test is likely acceptable, but if these events are frequent you
need to consider using a more powerful machine or set of machines to
run your scenario.

Useful tools aside SIPp

JEdit

JEdit [http://www.jedit.org/] is a GNU GPL text editor written in
Java, and available on almost all platforms. It’s extremely powerful
and can be used to edit SIPp scenarios with syntax checking if you put
the DTD (sipp.dtd [https://github.com/SIPp/sipp/raw/master/sipp.dtd]) in the same directory as your XML scenario.

Wireshark/tshark

Wireshark [https://www.wireshark.org/] is a GNU GPL protocol
analyzer. It was formerly known as Ethereal. It supports SIP/SDP/RTP.

SIP callflow

When tracing SIP calls, it is very useful to be able to get a call
flow from an wireshark trace. The “callflow” tool allows you to do
that in a graphical way: callflow [http://callflow.sourceforge.net/]

An equivalent exist if you want to generate HTML only call flows
http://www.iptel.org/~sipsc/ [https://web.archive.org/web/20120106005622/https://www.iptel.org/~sipsc/]

Index

 R

R

 	
 	
 RFC

 	RFC 2833, [1]

 	RFC 3261, [1], [2]

 	RFC 3725

 _images/dist_exponential.gif

_images/dist_lognormal.gif
£

o

_images/branching_01.gif
Branch_lient

©)

siip
772000k

Branch_server

Send REGISTER

Receive 200 OK

Recaive 200 OK

Sond INVITE

_images/branching_02.gif
Receive 200 OK

Send ACK

}CD@

For 25" cal

®

Send BYE

Receive 200 OK

®®®/

_images/dist_normal.gif
s % 8 on Rz = =

_images/master_slave.png
i -slave_cig <lile>

E

condCma dost=s1
I |ecicmaseem

racvma sroms1 sonacima dostem

sendCd dast-s2
— T

sendCma dastess
—
|
—
SendCmd dostem

rocvCma srces3 |4

_images/sipp-01.jpg
Scenario Screen - [1-4]: Change Screen -

Fiirave tlnni | Pore Tovai-vime Teval-call femetechost
5 epsiome) soe ois 4 127.0.0.1:s0s0 (e

10 new calls during 1,000 ¢ period 16 ae scheduler resolurion

o comememt, catie (Linit 300 Fauk vae 1 Gatis, afver 0%

0 ouc-of-call msy (discarded)
1 open sockers

Messages Retrans Timeowr Unexpected-Mew

s a0 o o
100 o o o
180 a0 o o
200 ERD 40 o o
Aok a0 o
YR a0 o o
200 a0 o o

[H-17171: Bajuse race

ta [p1: Pause cratfic -

nav.xhtml

 Table of Contents

 		
 Welcome to SIPp reference documentation!

 		
 Foreword

 		
 Installation

 		
 Getting SIPp

 		
 SIPp releases

 		
 Unstable release

 		
 Available platforms

 		
 Installing SIPp

 		
 Main features

 		
 Running SIPp in background

 		
 Screens

 		
 Exit codes

 		
 Contributing to SIPp

 		
 Integrated scenarios

 		
 UAC

 		
 UAC with media

 		
 UAS

 		
 regexp

 		
 branch

 		
 UAC Out-of-call Messages

 		
 3PCC

 		
 Create your own XML scenarios

 		
 Create your own XML scenarios

 		
 List of attributes common to all commands

 		
 List of commands with their attributes

 		
 Structure of client (UAC like) XML scenarios

 		
 Structure of server (UAS like) XML scenarios

 		
 Keyword list

 		
 [service]

 		
 [remote_ip]

 		
 [remote_port]

 		
 [transport]

 		
 [local_ip]

 		
 [local_ip_type]

 		
 [local_port]

 		
 [len]

 		
 [call_number]

 		
 [cseq]

 		
 [call_id]

 		
 [media_ip]

 		
 [media_ip_type]

 		
 [media_port]

 		
 [auto_media_port]

 		
 [last_*]

 		
 [field0-n file=<filename> line=<number>]

 		
 [file name=<filename>]

 		
 [timestamp]

 		
 [last_message]

 		
 [$n]

 		
 [authentication]

 		
 [pid]

 		
 [routes]

 		
 [next_url]

 		
 [branch]

 		
 [msg_index]

 		
 [cseq]

 		
 [clock_tick]

 		
 [sipp_version]

 		
 [tdmmap]

 		
 [fill]

 		
 [users]

 		
 [userid]

 		
 Actions

 		
 Regular expressions

 		
 Log a message

 		
 Execute a command

 		
 Internal commands

 		
 External commands

 		
 Media/RTP commands

 		
 Variable Manipulation

 		
 String Variables

 		
 Variable Testing

 		
 lookup

 		
 Updating In-Memory Injection files

 		
 Jumping to an Index

 		
 gettimeofday

 		
 setdest

 		
 verifyauth

 		
 Variables

 		
 Injecting values from an external CSV during calls

 		
 PRINTF Injection files

 		
 Printf Injection File Parameters

 		
 Indexing Injection files

 		
 Conditional branching

 		
 Conditional branching in scenarios

 		
 Randomness in conditional branching

 		
 SIP authentication

 		
 Initialization Stanza

 		
 3PCC Extended

 		
 Controlling SIPp

 		
 List of Interactive Commands

 		
 Traffic control

 		
 Remote control

 		
 Transport modes

 		
 UDP mono socket

 		
 UDP multi socket

 		
 UDP with one socket per IP address

 		
 TCP mono socket

 		
 TCP multi socket

 		
 TCP reconnections

 		
 TLS mono socket

 		
 TLS multi socket

 		
 SCTP mono socket

 		
 SCTP multi socket

 		
 IPv6 support

 		
 Multi-socket limit

 		
 Handling media with SIPp

 		
 RTP echo

 		
 RTP streaming

 		
 PCAP Play

 		
 Statistics

 		
 Response times

 		
 Available counters

 		
 Detailed Message Counts

 		
 Error handling

 		
 Unexpected messages

 		
 Retransmissions (UDP only)

 		
 Log files

 		
 Performance testing with SIPp

 		
 Advice to run performance tests with SIPp

 		
 SIPp’s internal scheduling

 		
 Useful tools aside SIPp

 		
 JEdit

 		
 Wireshark/tshark

 		
 SIP callflow

_images/sipp-04.jpg
Seare Tiue
Last Reset Time
Current Tiue

Blapsed Tine
Call Rate

Tncoming call created
OucCoing call creaced
Total Call created
Current Call

Successful call
Failed call

Response Tine |
Call Length |
(R

adjuse race

Seavistics Sereen
2004-07-13 17:24:08
2004-07-13 17:26:05
2004-07-13 17:26:06

Periodic value

00:00:00

00:00:00: 000
00:00:00: 000
La1: Sofe exic -

-4

Change Sereen -

Cumilasive value

o0:01:58
24.886

00:00:00
00:00:00

w1

000
000
Pause traffic -

_images/sipp-05.jpg
Repartition Screen [1-4]: Change Sereen -
verage Response Time Reparcition
o B 1000 us
1040 us
1080 us
1120 us
1160 us
1200 us
1200 us
verage Call Length Reparcicion
o 1000
1000 1100
1100 1200
1200 1300
1300 Lo
5= lam0
[H-17171: Baguse rave ta

_images/sipp-02.gif
[Eeenaioxml]
<sena>
<rteoaTAl

10 (remote_ip): [renote_port] ST/2.0
ansport] [lozal_ip): [1ocal_porc]

[155al_ip]: [1ocal_portl>;tag= [call_maber]
:_ip]: Tremote_porcl>

To: sut <sip: [servica]a [remo
Call-Tp: leall ia)

Coeq 1 TWITE

Contact: sip: [fielatiallocal ip]
Max-Forvards: 70

Subject: Perfomance T
Contenc-Type: spplicaci:
Contenc-Lengeh: 136

ocal_pore]

muserl 53655765 2353687637 T 14 I

o
N TP4 [nedia ip]
iio [media porc RIP/AVP 0
a=rtpuap:0 POII/2000

N>
</sene>

'SEQUENTIAL
arah;sipphone32

Bob:sipphonelz

Fred;sipphon=94

_images/sipp-03.jpg
Scenario Sereen - [1-4]: Change Screen -
Call-rate(length] Porc Toral-time Toral-calls Remote-host
150 cps(0 ms) s0sL so.01 = 5586 127.0.0.1:5060 (0DP)

190 nev calls during 1.000 s period 3 ms scheduler resolucion
205 concurrent calls (Linit 570) Peak vas 232 calls, afcer 6 =
0 out-of-call msy (discarded)

1 open sockers

Messages Recrans Timeowr Unexpected-Mew
mvrrs sses o o

e o o

180 sses o

200 ases 68

Aok ases 68

1000 us1
YR - a381
200 BRI 838l

171715 Bajuse rave ta

_static/comment-bright.png

_images/sipp-06.jpg
Varisbles Sereen - [1-4]: Change Sereen -
etion dsfined Per Message

Message[3] (Receive Message) - [3] action(s) defined

--> action(0] = Typell] - vherelFull Msg] - checkTc(l] - varTdll]

> actionll] = Typell] - vherelFull Msg] - checkTc(l] - varTd(2]

--> action(2] = Typell] - vherelHeader-Contact:] - checkTtll] - varTdls]

Setted Verisble Liste
Variable[l] : sected regBxp[([0-31(1,3)1.)(3}[0-31(1,3): [0-317]

Variable[2] : sected regBxp[([0-31{1,3)1.)(3}[0-31{1,3): [0-317]
Variable(s] : secced regkxpl.7]

= LHIZ171/1: Rajuse rate ---- [g]: Sofe exit —--= [p]: Pause craffic -

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/plus.png

_static/up.png

